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Abstract  46 

It has been estimated that more than 48% of global methane emissions from lakes and reservoirs 47 

occur at low latitudes (<24o). To improve this estimate, knowledge from underexplored ecosystems, 48 

particularly deep lakes and reservoirs in Asian monsoon regions, is needed, because the magnitude 49 

of methane emissions is influenced by lake bathymetry and climatic conditions. We conducted 50 

long-term studies beginning in 2004 at Feitsui Reservoir (FTR) in Taiwan, a subtropical 51 

monomictic system with a maximal depth of 120 m. Our aim was to monitor seasonal and 52 

interannual variations of three key characteristics and to understand the mechanisms underlying 53 

these variations. Key characteristics were as follows: 1) the balance of primary production and 54 

heterotrophic respiration as a determinant of vertical oxygen distribution, 2) methane production at 55 

the bottom of the reservoir, oxidation in the water column, and emission from the lake surface, and 56 

3) contribution of methane-originated carbon to the pelagic food web through methane-oxidizing 57 

bacteria (MOB). This review highlights major achievements from FTR studies integrating isotopic, 58 

microbial, and modeling approaches. Based on our findings, we proposed two conceptual models: 59 

1) a model of methane dynamics, which addresses the difference in methane emission mechanisms 60 

between deep and shallow lakes, and 2) a spatially explicit model linking benthic methane 61 

production to the pelagic food web, which addresses the diversity of MOB metabolisms and their 62 

dependence on oxygen availability. Finally, we address why long-term studies on subtropical lakes 63 

and reservoirs are important for better understanding the effects of climate on low- to mid-latitude 64 

ecosystems.  65 

 66 

Keywords: methane production; methane oxidizing bacteria; food web model; isotope ecology; 67 

environmental microbiology 68 

  69 
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Background 70 

Growing evidence indicates that the global methane budget is potentially influenced by methane 71 

release from freshwater systems (e.g., Bastviken et al. 2004; Ciais et al. 2013; Hamdan and 72 

Wickland 2016) and shallow coastal areas in marine systems (Borges et al. 2016; 2017), whereas 73 

open ocean (excluding areas with hydrates, especially in the arctic) is a minor contributor (Bates et 74 

al. 1996; Rhee et al. 2009). Freshwater studies, encompassing arctic (Kling et a. 1992, Laurion et al. 75 

2010), boreal (Bastviken et al. 2004, Huttunen et al. 2003), and temperate (e.g., Michmerhuizen et 76 

al. 1996) systems, have led to an estimated emission rate of 103 Tg methane year-1 from lakes, 77 

reservoirs, and rivers (Bastviken et al. 2011). This estimate is equal to 0.65 Pg of C (expressed as 78 

CO2 equivalent) and 25% of the estimated terrestrial greenhouse gas sink. The estimate would be 79 

even larger if more recent studies on rivers were to be considered (Borges et al. 2015a, b).  80 

The magnitude of methane emission from the lake water surface is largely influenced by 81 

climate and lake bathymetry (i.e., depth and area) (Bastviken 2004), which critically determine the 82 

vertical distribution of oxygen. For example, the duration of the thermal stratification period and the 83 

lake bathymetry control the depth and stratification intensity of the mixed layer (Wilhelm and 84 

Adrian, 2008), which, in turn, determine the balance of primary production (PP) and aerobic 85 

respiration (Ostrom et al. 2005), especially in the surface layers. This balance affects the degree of 86 

oxygen depletion in deeper layers, which controls the production and oxidation of methane because 87 

these processes are regulated by oxygen availability (Murase et al. 2005). For these reasons, 88 

regional variations in freshwater methane emission are important considerations for a reliable global 89 

estimate (Bastviken et al. 2004; Tranvik et al. 2009; Pacheco et al. 2013).  90 

According to estimates based on several studies, more than 48% of global methane 91 

emissions from lakes and reservoirs are due to methane release at lower latitudes (<24o) (calculated 92 

from Table 1 in Bastviken et al. 2011). However, most studies of methane emissions from lakes and 93 

reservoirs at lower latitudes concerned shallow lakes (i.e., Amazon floodplains; Bastviken et al. 94 

2010), only five of which were located in Asia. Although this distribution is partly reasonable 95 
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because most lakes are shallow (Wetzel 1990), more studies from deep lakes and reservoirs in Asian 96 

monsoon regions will contribute to improve the accuracy of the estimate.  97 

Multiple factors influence methane biogeochemistry. Key determinants of methane 98 

oxidation are oxygen availability, oxygen-to-substrate ratio (Morana et al. 2015), and temperature 99 

(Lofton et al. 2014). The main determinants of anaerobic methane production are oxygen deficiency 100 

and substrate availability, factors that are also influenced by lake bathymetry (Bastviken et al. 2004; 101 

2008). Anaerobic methane oxidation is believed to be coupled with denitrification, which is affected 102 

by nitrogen availability (Deutzmann et al. 2014). The phylogeny of archaea and bacterial groups 103 

indicates their specific roles in methane production and oxidation (Borrel et al. 2011). 104 

In addition to their role in biogeochemical cycling, methane-oxidizing bacteria (MOB), also 105 

known as methanotrophs, represent alternative carbon resources at higher trophic levels in benthic 106 

and pelagic food webs (Kiyashko et al. 2001; Deines and Fink 2011; Jones and Grey 2011). The 107 

contribution of methane-derived carbon via MOB to the pelagic food web changes with season in 108 

temperate regions (Taipale et al. 2009). However, this topic remains underexplored for lakes and 109 

reservoirs in subtropical and tropical regions (hereinafter referred to as “lower-latitude regions”). 110 

Due to high water temperature and meromixis, tropical lakes have high potential for 111 

methane production in anoxic deep waters and sediment (e.g., Abril et al. 2005; Pasche et al. 2011), 112 

resulting in characteristic methane accumulation near the bottom under reducing conditions. In 113 

contrast, monomictic subtropical lakes can recover from hypoxia in deep water by vertical mixing 114 

in winter or extreme weather events such as typhoons (e.g., Tanaka and Tsuda, 1996; Yoshimizu et 115 

al., 2010) and hurricanes. This effect may decrease the potential for methane production by 116 

methanogens in the sediment but can facilitate methane oxidation by MOB in the water column. 117 

Therefore, an understanding of these processes in subtropical deep lakes will provide insights into 118 

the mechanisms underlying carbon budget, methane emission, and MOB roles in food webs of lakes 119 

and reservoirs at lower latitudes, and will aid in improving the estimate of the global budget of 120 

carbon and methane release. 121 
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The aim of this paper is to provide information for better understanding the mechanisms of 122 

methane dynamics at lower latitudes. First, we highlight the research questions, approaches, and 123 

some achievements from a long-term study of a subtropical deep reservoir. Second, we propose 124 

some perspectives, including a revised conceptual model for methane dynamics in lakes and 125 

reservoirs at lower latitudes and new research directions. 126 

 127 

Research Questions and Approaches 128 

With the aim of improving understanding of methane dynamics at lower latitudes, we specifically 129 

focused on three questions. (1) How do physical structure and seasonal disturbances alter the 130 

balance between PP and bacterial heterotrophy? (2) Under what conditions would methane 131 

production and oxidation be enhanced in lower-latitude lakes? (3) Under what conditions would the 132 

contribution of MOB to the food web increase? An answer to the first question would help address 133 

the subsequent two questions because these two counter biological processes (PP and bacterial 134 

heterotrophy) control the redox conditions that, in turn, affect methane dynamics. 135 

 To address our research questions, we carried out a multiyear survey in which we observed 136 

the PP, aerobic respiration, and dynamics of methane in response to environmental changes. This 137 

study was motivated by the notion that a small lake system is particularly sensitive to different 138 

environmental conditions with interannual variations in climate.  139 

 Beginning in November 2004, we conducted field sampling at Feitsui Reservoir (FTR) 140 

(120.34E, 24.54N; maximal depth: 120 m) in northern Taiwan. FTR is a good model system for 141 

deep monomictic lakes in subtropical regions because: (1) it is well-protected from anthropogenic 142 

pollution and, thus, habitat destruction, and its nutrient status is oligotrophic to mesotrophic (Chang 143 

and Wen 1997); and (2) the region has substantial interannual variations in winter mixing intensity, 144 

degree of summer stratification, and thickness of hypoxic hypolimnion, depending on weather 145 

conditions (Itoh et al. 2015; Ho et al. 2016). In addition, typhoons are a major disturbance of 146 

summer stratification in this region (e.g., Fan and Kao 2008). Extreme weather events like typhoons, 147 
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which typically occur at lower latitudes, affect water and material cycling in lakes. The strength and 148 

frequency of typhoons passing on or near FTR change interannually; thus, we can focus on and 149 

observe the ecosystem responses to hydrodynamical changes. 150 

 151 

Results of Research on FTR 152 

R1. Disproportionate enhancement of bacterial over algal activity induced by typhoons 153 

Using time-series data from 2004 to 2007, Tseng et al. (2010) showed that the ratio of bacterial 154 

production (BP) to PP (hereafter; BP/PP) in FTR was higher in strong typhoon years (2004 and 155 

2005: 27% ± 40%) than in normal typhoon years (2006 and 2007: 12% ± 9%). This result indicates 156 

a disproportionate increase of BP relative to PP after typhoons. In FTR, BP was two-fold greater, 157 

but PP was only 20% greater, in strong than in normal/weak typhoon years. Such disproportionate 158 

enhancement of heterotrophic bacterial activity by typhoons has seldom been described in 159 

freshwater ecosystems. Previous studies focused on the effect of typhoons on autotrophic activity 160 

(PP) only (Ko et al. 2015, 2017; and citations therein), whereas only a few studies quantified both 161 

PP and BP (Shiah et al. 2000; Tsuchiya et al. 2015).  162 

 The increased BP/PP with typhoons in FTR can be explained by the relative extent of the 163 

phosphorus (P) limitation in PP vs. BP. Whereas bioassay experiments demonstrated that 164 

autotrophic and heterotrophic activities are limited by P but not carbon or nitrogen (Tseng et al. 165 

2010), heterotrophic bacteria exhibited a faster response than algae did to phosphate enrichment 166 

(Fig. 7 in Tseng et al. 2010). This experiment suggests that, in the field, the P pulse introduced by 167 

typhoons might relieve bacteria more than phytoplankton from P limitation. This result fits well 168 

with past empirical studies and theories indicating that bacteria are responsible for the major uptake 169 

of P due to their superior competition capacity in oligotrophic ecosystems (Currie and Kalff 1984, 170 

Thingstad et al. 1997, Vadstein 2000).  171 

 Strong typhoons may affect plankton activities in both euphotic and aphotic zones. Heavy 172 

rains caused by typhoons resulted in supply of P by hyperpycnal flow. This P entered aphotic zones 173 
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and enhanced bacterial production in aphotic and euphotic zones. Decoupling of BP and PP (i.e., 174 

increased BP/PP) in euphotic zones and increased BP in aphotic zones resulted in enhanced 175 

consumption and reduced concentration of dissolved organic carbon (DOC) in euphotic and deeper 176 

zones (Tseng et al. 2010).  177 

 178 

R2. Distinct interannual variations of dissolved oxygen (DO) vertical profile between summer and 179 

winter  180 

The vertical profile of DO is the key controlling factor for aerobic and anaerobic respiration. Itoh et 181 

al. (2015) found that the interannual DO patterns in summer were different from those in winter in 182 

FTR, implying the presence of season-specific controlling mechanisms. In a typical monomictic 183 

lake, DO levels in the deep layer should be highest after vertical mixing of the water column in the 184 

coolest part of the year and lowest at the end of the stratification period. DO levels at the bottom 185 

during the coolest period negatively correlated with surface water temperature in 2005–2014 (Itoh 186 

et al. 2015). Higher surface water temperature led to weaker winter mixing and deficiency of DO at 187 

the bottom, which could last until the next stratification period.  188 

 In the summer period (June to September), when rainfall peaks with summer monsoon 189 

fronts and typhoons, interannual variation of DO levels (evaluated by saturation level to normalize 190 

temperature dependence) was complex and tended to depend on depth. This result was attributed to 191 

an increase in lateral water flow from upstream rivers and hillslopes with intensive rainfall and its 192 

effects on microbial activities. In mid-depth layers (20–30 m), DO levels tended to be lower in 193 

strong typhoon years (2004 or 2005) than in weak typhoon years (2006 or 2007) (Fig. 1). There was 194 

no difference in DO levels at 0, 10, and 50 m between years in the summer. In the summer of 2004, 195 

typhoons might induce lateral turbid flow from upstream, with movement of eroded soils or 196 

suspended sediments into mid-depth layers (20–50 m) (Fan and Kao 2008). Particles suspended in 197 

turbid lateral flow would contribute to oxygen consumption in mid-depth layers. These results 198 

imply that DO levels at mid-depth layers might be affected by typhoons and subsequent 199 
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disproportionate increases in bacterial activity over algal growth. At the same time, however, the 200 

vertical profile of DO in strong typhoon years (2004 and 2005) indicated that the turbid lateral flow 201 

provided external DO to deeper layers (90 m; Fig. 1). DO levels at the bottom would not only result 202 

from effects of typhoons, but also would be influenced by the legacy of winter mixing in the 203 

previous year (Itoh et al. 2015).  204 

 205 

R3. Role of winter mixing in determining anaerobic methane production in lake sediment 206 

Observations in FTR indicated that: (1) stratification can be maintained even during winter when 207 

mixing is weak due to high surface water temperature, and (2) lower surface water temperature in 208 

winter leads to more intense mixing. Reducing conditions in the bottom layer due to incomplete 209 

vertical mixing in winter decreased profundal DO and NO3
– concentrations in the following summer. 210 

Oxygen was depleted during the subsequent thermal stratification period, and this oxygen depletion 211 

facilitated NO3
– consumption by denitrifiers. Based on seasonal variations of the vertical profiles of 212 

methane concentrations and stable isotope signal (13C ) values from 2012 to 2014, weak winter 213 

mixing can increase sedimentary methane production and, thus, profundal methane storage through 214 

hypoxia during the thermal stratification period (Itoh et al. 2015). Unfortunately, we did not observe 215 

methane dynamics in 2004–2007 and, therefore, were unable to investigate directly the effects of 216 

typhoons on methane production (see section above). Overall, this situation is analogous to the 217 

study of Marotta et al., (2014) of an Amazonian tropical lake in which winter mixing is not 218 

expected. Results demonstrated that anaerobic biological methane production in the sediments 219 

increased exponentially in response to increased temperature.  220 

 221 

R4. Consequences of methane oxidation in the water column on methane release from the surface  222 

Although a long, strong stratification period increased the amount of methane that was produced 223 

and accumulated in the bottom layer, this process did not directly enhance the amount of methane 224 

emitted from the surface. With a maximal depth of 120 m, FTR is sufficiently deep that most 225 
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methane produced in the profundal layer is consumed and oxidized by MOB (Itoh et al. 2015). Such 226 

decoupling of methane accumulation in the bottom layer from methane emission at the surface was 227 

observed in strongly stratified tropical meromictic lakes (e.g., Borges et al. 2011). Methane 228 

oxidation in the water column was evidenced by a decrease in methane concentration with 229 

increasing distance from sediment (mostly within 20–30 m above the sediment) in tropical (Rudd 230 

1980; Guerin and Abril 2007; Borges et al. 2011), subtropical, and temperate lakes (Eckert and 231 

Conrad 2007; Bastviken et al. 2008; Chanudet et al. 2011; Roland et al. 2017). Other studies 232 

directly demonstrated methane oxidation in the water column by water incubation experiments (e.g., 233 

Utsumi et al. 1998).  234 

 In FTR, substantial methane oxidation in the water column was initially revealed by 235 

studying the 13C-methane profile in water samples with low methane concentrations (Itoh et al. 236 

2015). The same method was used in the tropical Lake Kivu (Morana et al. 2015). The 237 

13C-methane values were consistently negative in the near-bottom layer, reflecting that large 238 

isotope fractionation occurred during methanogenesis. The 13C-methane values were higher in the 239 

oxic/anoxic boundary layer (especially up to 30 m above the sediment surface). This result suggests 240 

that much of the enrichment of dissolved 13CH4 was due to methane oxidation because MOB 241 

consume 12CH4 slightly faster than 13CH4. Anaerobic and aerobic methane oxidation would be 242 

involved in methane consumption. Even during the stratified period, MOB were the predominant 243 

component of the whole bacterial community near the bottom of the water column, where oxygen 244 

was almost depleted, as shown by Kojima et al. (2014) using catalyzed reporter deposition 245 

fluorescence in situ hybridization (CARD-FISH) analysis. 246 

 247 

R5. Major types of methanotrophs in FTR 248 

Molecular analysis of bacterial communities in FTR revealed eight species-level operational 249 

taxonomic units (OTUs) of Type I MOB (gammaproteobacteria, commonly found in temperate 250 

lakes), one OTU of Type II MOB (alphaproteobacterial, commonly found in tropical lakes), and one 251 
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Methylomirabilis-like OTU belonging to candidate phylum NC10 (Kojima et al. 2014). 252 

Methylomirabilis oxyfera is a nitrite-dependent methane oxidizer (Ettwig et al. 2010). 253 

 Vertically, analysis of 16S rRNA gene-based clone libraries demonstrated that Types I and II 254 

MOB were distributed in the hypoxic layer at 90 m, even in the summer stratification period, and in 255 

the oxic surface layer at 10 m (Kojima et al. 2014). Clone libraries of pmoA genes encoding 256 

particulate methane monooxygenase confirmed their presence at 90 m in the winter. This result is 257 

inconsistent with the conventional hypothesis that Types I and II MOB are aerobic. The number of 258 

16S rRNA gene clone libraries analyzed was not enough to permit discussion of the seasonal or 259 

interannual variations in relative abundances of Types I and II MOB. However, CARD-FISH 260 

analysis of bacteria in the 90-m layer in winter (December 2013) demonstrated the dominance of 261 

Methylomirabilis-like OTUs (Kojima et al. 2014). These records represent the first evidence of 262 

anaerobic methane oxidizers in the water column of lake ecosystems, although many studies have 263 

reported the presence of anaerobic methane oxidizers coupled with denitrification in freshwater 264 

sediment (Raghoebarsing et al. 2006; Ettwig et al. 2009, 2010; Deutzmann et al. 2014; Norði and 265 

Thamdrup 2014). 266 

 These results have two implications. First, spatial distributions of Types I and II MOB imply 267 

that they are involved in the carbon flow under both oxic and hypoxic conditions, relying on distinct 268 

biochemical pathways (Vecherskaya et al. 2009; Kits et al. 2015). Second, the presence of the NC10 269 

OTU close to the anaerobic nitrite reducer Cadidatus M. oxyfera implies that methane oxidation 270 

would be coupled with nitrogen cycling in the water column of FTR. Further study of anaerobic 271 

methane oxidizers in lower-latitude lakes will be needed for a thorough understanding of MOB 272 

activities in lake ecosystems.  273 

 274 

R6. Interannual variations in the MOB contribution to the pelagic food web  275 

Results of isotope analyses based on the MixSIR Beyesian mixing model demonstrated interesting 276 

seasonal and interannual (2010–2013) variations in the contributions of MOB to the pelagic food 277 
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web (Ho et al. 2015). The MOB contribution tended to be highest in winter, consistent with patterns 278 

in other climatic regions, including boreal (Taipale et al., 2011) and tropical lakes (Morana et al., 279 

2015). Interannual variations in winter are potentially influenced by two contrasting mechanisms. 280 

On the one hand, deficiency of profundal DO in summer enhances methanogenesis and 281 

accumulation of profundal methane toward winter, supplying more substrate to MOB and resulting 282 

in a higher contribution of MOB in winter. On the other hand, oxygen supply for profundal waters 283 

due to winter mixing enhances aerobic methane oxidation, resulting in a higher contribution of 284 

MOB to the food web in winter. The former mechanism would be the case if MOB were more 285 

limited by methane availability than by oxygen availability which is clearly the case in FTR.  286 

 Results of a vertically structured food web model using reaction-advection-diffusion 287 

equations predicted that deeper disturbance during summer would suppress the contribution of 288 

MOB in winter (Ho et al. 2016). Although winter mixing could have positive and negative effects 289 

on the contribution of MOB over the year, stronger mixing in winter resulted in weaker deficiency 290 

of profundal DO in the next summer, leading to lower MOB contribution in the following winter. 291 

This result is consistent with the methane accumulation pattern (Itoh et al. 2015) and estimates from 292 

the stable-isotope mixing model (Ho et al. 2016).  293 

 Molecular analyses of bacterial communities indicated that the taxonomic composition of 294 

MOB (i.e., anaerobic MOB phylogenetically close to NC10 and aerobic Types I and II) changed 295 

seasonally and vertically (Kojima et al. 2014; Kobayashi et al. 2016). However, due to the limited 296 

availability of quantitative data, MOB functional activity in the food web model was parameterized 297 

following an earlier experimental study (Harrits and Hanson 1980). MOB activity was assumed to 298 

be suppressed by low or high oxygen availability and to be maximal at an oxygen level of around 299 

200 mmol O2 m
-3. This model is a black box approach to represent the diverse functionality of 300 

MOB implicitly by assuming that the community is a mixture of aerobic and anaerobic MOB. If we 301 

assumed much lower optimal DO levels (with predominance of anaerobic MOB), then the model 302 

would be unable to explain the observed higher contribution of MOB in winter than summer when 303 
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oxygen availability is high due to vertical water mixing. Therefore, we argue that both aerobic and 304 

anaerobic reactions are responsible for sustaining the food web productivity, especially in winter. 305 

 306 

Perspectives 307 

Perspective 1: Vertical distribution of methane in deep lake/reservoir at lower latitudes 308 

Here, we propose a conceptual model for the vertical patterns of methane and its related elements in 309 

a deep lake during the stratification period (Fig. 2). This model includes stable isotope signatures 310 

for methane compared to the shallow lake illustration modified from Bastviken et al. (2004).  311 

 Methane production, originating from organic matter and CO2, mainly occurs in the 312 

anaerobic sediment. Productions of sedimentary methane (by methanogenesis) and CO2 (by 313 

heterotrophic respiration) are controlled by profundal DO. The vertical distribution of DO depends 314 

on the difference in the intensities of stratification and mixing, which are affected by the climate 315 

condition. Despite the high profundal methane concentration in the stratified period, most of the 316 

dissolved methane can be oxidized within 20 to 30 m above the sediment layer (see R4) in deep 317 

lakes. This fact suggests that sedimentary methane production is not a main source of methane 318 

emission from lakes with sufficient depth (right diagram in Fig. 2). By contrast, in shallow lakes, 319 

methane produced in sediment affects methane flux at the water surface as both ebullition and 320 

diffusion flux with being oxidized incompletely (left diagram in Fig. 2). This phenomenon is also 321 

true for methane produced in sediment of the shallow part of a deep lake. For example, findings in 322 

German lakes showed that the ratio of the surface area of the shallow water zone to the entire lake 323 

area was a better predictor of surface methane concentration than the total surface area (Encinas 324 

Fernández et al. 2016). Nevertheless, studies of the distinct methane dynamics in shallow vs. deep 325 

parts of lakes at lower latitudes are needed to confirm the robustness of Encinas Fernández’s 326 

conclusion.  327 

 Methane emissions from deep lakes could potentially be explained by subsurface methane 328 

production. The maximum amount of subsurface methane reported in some oceans and lakes 329 
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implies in situ methane production in oxic waters (Bogard et al. 2014; Tang et al. 2014; Itoh et al. 330 

2015; Yao et al. 2016). Therefore, subsurface rather than profundal methane production may 331 

account for a portion of the methane emitted from the water surface. As frequently happens in 332 

well-stratified tropical lakes (Verburg et al. 2003), cyanobacterial blooms occur during summer in 333 

FTR. It may be that the subsurface cyanobacteria bloom in summer plays a neglected role in the 334 

production of methane and the vertical distribution of oxygen and, thus, regulates anaerobic 335 

methanogenesis in the bottom layer. Although interactions between cyanobacteria and 336 

bacteria/archaea can result in methane production in oxic layers (Bogard et al. 2014), the 337 

mechanism for this process is not fully understood (summarized in Tang et al. 2016). Another 338 

controversy is whether methane produced in the oxic subsurface layers contributes much (Bogard et 339 

al. 2014) or little (Encinas Fernández et al. 2016) to the amount of methane emitted from the lake 340 

surface. Finally, the possible production of CH4 under aerobic conditions (Karl et al. 2008; Damm 341 

et al. 2008) in marine systems has been debated. Although this process could explain the very low 342 

concentration (< 4 nM) of CH4 in open and deep oceanic regions, it cannot explain the much larger 343 

concentration of CH4 (10–1000 nM) in shallow coastal areas, where CH4 undoubtedly comes from 344 

sediments (Borges et al. 2016; 2017). 345 

 346 

Perspective 2: Roles of diverse methanotrophs (MOB) in food web dynamics 347 

From a food-web perspective, MOB are key players in a new mode of pelagic-benthic coupling in 348 

lake ecosystems (Schindler and Scheuerell 2002). In the broadly accepted view of pelagic-benthic 349 

coupling in deep lakes, sedimentation of organic matter produced by pelagic production is the basal 350 

resource of benthic invertebrates and fishes, which act as alternative resources of pelagic mobile 351 

predators such as zooplankton and fishes. In the new mode of pelagic-benthic coupling in deep 352 

lakes, summer pelagic PP is transferred to the benthic layers, ultimately supporting the secondary 353 

production of pelagic zooplankton mediated by methane-based food webs along the water column.  354 

 Two aspects of this new mode of pelagic-benthic coupling need to be addressed. First, the 355 
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contribution from the benthic (methanotrophs) to pelagic (zooplankton) habitats mainly occurs 356 

during winter. The coupling effect has a time delay, due to the time required for sedimentation of 357 

particulate organic matter from the pelagic to benthic and for subsequent biogeochemical processes 358 

in benthic habitats (sediment plus deep water column), which supply resources to zooplankton 359 

through methane-based food webs (Ho et al. 2016). Second, our microbial ecology studies (Kojima 360 

et al. 2014; Kobayashi et al. 2016) and other existing evidence (refs. in Fig. 3) indicate that the 361 

sources of biomass carbon from MOB to the microbial food web are more diverse than previously 362 

thought (Fig. 3). Methane is not always directly integrated into the microbial food web via MOB 363 

assimilating methane through aerobic methane oxidation. For example, carbon biomass of M. 364 

oxyfera (NC10) is assimilated by fixation of CO2 but not directly by carbon from methane (Rasigraf 365 

et al. 2014). Therefore, dominance of the M. oxyfera-like phylotype in anoxic layers of FTR 366 

(Kojima et al. 2014) implies that methane is completely respired as CO2. Some of the CO2 367 

assimilated into the bacterial biomass could have originated from methane oxidation; thus, carbon 368 

from methanogenesis is only indirectly incorporated into MOB biomass and the microbial food web. 369 

In addition, the presence of Types I and II MOB (Methylocystis) in the deep layers (anaerobic or 370 

microaerobic condition) implies that fermentative reactions support their activities, which are 371 

coupled with the release of organic acids such as acetate (Vecherskaya et al. 2009; Kalyuzhnaya et 372 

al. 2013). These organic acids are substrates for the growth of some bacteria, including Methlocystis 373 

(Belova et al. 2011; Im et al. 2011), and are finally incorporated into the microbial food web (i.e., 374 

indirect incorporation of methane-originated carbon). 375 

 These diverse types of MOB and metabolic pathways from methane should be further 376 

explored to understand better the importance and mechanisms of methane-based food web 377 

dynamics. The next version of the dynamical model coupling methane processes and food web 378 

dynamics should incorporate these diverse processes. In addition, CO2 would be repeatedly recycled 379 

within the anaerobic food chain in the sediment and sediment-water column boundary (Fig. 3). 380 

Therefore, isotope analysis of CO2 and MOB together with analysis of phospholipid fatty acids (e.g., 381 
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Belova et al. 2011) will be necessary to elucidate the dominant reactions and estimate the timescale 382 

of interactions between CO2, methane, and MOB and, thus, the new pelagic-benthic coupling.    383 

 384 

Perspective 3: Importance of studying underexplored tropical/subtropical lakes 385 

Lakes in subtropical regions are highly dynamic in terms of their interannual climate variations and 386 

strength/frequency of disturbances. These factors are determinants of the vertical, seasonal, and 387 

interannual variations of microbes and biogeochemical processes. Such variations control the 1) 388 

balance of PP and aerobic respiration, 2) production and oxidation of methane, and 3) incorporation 389 

of methane-originated carbon into the pelagic food web (Figs. 1–3). Our multiple approaches to 390 

understand methane dynamics targeted a subtropical reservoir (FTR) with an essentially 391 

monomictic pattern. As is the case in some reported subtropical lakes, FTR occasionally 392 

experiences not only incomplete vertical mixing in winter but also stronger and longer thermal 393 

stratification periods, resulting in profundal hypoxia (e.g., Sahoo and Schladow 2008; Yoshimizu et 394 

al. 2010). In contrast, intensive winter mixing can be observed in cold winters. These findings 395 

indicate that long-term studies of deep monomictic lakes and reservoirs at lower latitudes can reveal 396 

aspects of both meromictic and monomictic lakes. 397 

 Our study sheds new light on other important controlling factors of biogeochemical cycles, 398 

such as the disruption of stratification by heavy-rain events. Lower-latitude areas experience a 399 

higher frequency of heavy precipitation than mid- or high-latitude regions (Dai 2012). Under recent 400 

warming conditions, the frequency of heavy precipitation and the temperature of mid-latitude 401 

regions have been increasing and are predicted to increase further (e.g., Meehl et al. 2005). 402 

Knowledge of the response of methane dynamics in lower-latitude lakes to climate variations will 403 

make it possible to predict the future condition of mid-latitude lakes. Our case study showed that 404 

the effects of typhoons in summer on the ratio of PP to aerobic respiration and, thus, DO levels were 405 

depth-specific. Long-term comparative studies of other mero/monomictic lakes at the 406 

tropical/subtropical boundary (e.g., Okuda et al. 2017) will provide more comprehensive 407 
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understanding of mechanisms in lakes at a wide latitudinal scale in a changing world.  408 

 409 

 410 

  411 
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Figure Legends 412 

Fig. 1 DO saturation (%) in each sampling depth from June to September from 2004 to 2007 413 

(strong typhoon years 2004 or 2005 and weak typhoon years 2006 or 2007). Numbers in 414 

parentheses indicate numbers of samples. Box plots show median (line), 25th to 75th percentiles 415 

(box), 10th to 90th percentiles (bars), and individual values <10th or >90th percentile (points). 416 

Differences were detected using one-way ANOVA and Tukey's multiple comparison tests. Different 417 

letters indicate a significant difference (P < 0.05). 418 

 419 

Fig. 2 Schematic of methane dynamics in shallow lakes and coastal parts of deep lakes 420 

(modified from Bastviken et al. 2004) and pelagic parts of deep lakes (modified from Itoh et al. 421 

2015) during the stratification period. Right panel shows vertical profiles of temperature, DO, 422 

methane concentration, methane carbon isotope ratio, and nitrate concentration at the end of 423 

stratification period (Dec 2013) in FTR (Itoh et al. 2015). 424 

 425 

Fig. 3 Schematic diagram illustrating our new conceptual model of pelagic-benthic coupling 426 

mediated by vertically structured diverse MOB groups. Some arrows are omitted for simplicity 427 

(e.g., release of CO2 from zooplankton). Distribution of microbes in benthic habitats (from 428 

microaerobic water column to anaerobic sediment) was not clearly separated in FTR project, 429 

although it is conceptually separable. Microbial members in sediment (fermenter and methanogen) 430 

were not targets of observation in this project. HB represents heterotrophic bacteria that utilize 431 

photosynthetic products (POM). Ref1: Belova et al. 2011; Im et al. 2011, Ref2: Morel et al. (2011), 432 

Ref3: Vecherskaya et al. (2009) and Kalyuzhnaya et al. (2013), Ref4: Ettwig et al. (2010) and 433 

Rasigraf et al. (2014).     434 
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