8 research outputs found

    Protection of buried rigid pipes using geogrid-reinforced soil systems subjected to cyclic loading

    Get PDF
    YesThe performance of buried rigid pipes underneath geogrid-reinforced soil while applying incrementally increased cyclic loading was assessed using a fully instrumented laboratory rig. The influence of varying two parameters of practical importance was investigated; the pipe burial depth and the number of geogrid-layers. Measurements were taken for pipe deformation, footing settlement, strain in pipe and reinforcing layers, and pressure/soil stress on the pipe crown during various stages of cyclic loading. The research outcomes demonstrated a rapid increase in the rate of deformation of the pipe and the footing, and the rate of generated strain in the pipe and the geogrid-layers during the first 300 cycles. While applying further cycles, those rates were significantly decreased. Increasing the pipe burial depth and number of geogrid-layers resulted in reductions in the footing and the pipe deformations, the pressure on pipe crown, and the pipe strains. Redistribution of stresses, due to the inclusion of reinforcing layers, formed a confined zone surrounding the pipe providing it with additional lateral support. The pipe invert experienced a rebound, which was found to be dependent on pressure around the pipe and the degree of densification of the bedding layer. Data for strains measured in the geogrid-layers showed that despite the applied loading value and the pipe burial depth, the tensile strain in the lower geogrid-layer was usually higher than that measured in the upper layer

    The impact of single gene and chromosomal disorders on hospital admissions in an adult population

    No full text
    Although the role of single gene and chromosomal disorders in pediatric illness has been recognized since the 1970s, there are few data describing the impact of these often severe disorders on the health of the adult population. In this study, we present population data describing the impact of single gene and chromosomal disorders on hospital admissions of patients aged 20 years and over in Western Australia between 2000 and 2006. The number, length, and cost of admissions were investigated and compared between disease categories and age groups and to hospital admissions for any reason. In total, 73,211 admissions and 8,032 patients were included in the study. The most costly disorders were cystic kidney disease, α-1 anti-trypsin deficiency, hemochromatosis, von Willebrand disease, and cystic fibrosis. Overall, patients with single gene and chromosomal disorders represented 0.5% of the patient population and were responsible for 1.9% of admissions and 1.5% of hospital costs. These data will enable informed provision of health care services for adults with single gene and chromosomal disorders in Australia

    Tesofensine, a Novel Triple Monoamine Reuptake Inhibitor, Induces Appetite Suppression by Indirect Stimulation of α1 Adrenoceptor and Dopamine D1 Receptor Pathways in the Diet-Induced Obese Rat

    No full text
    Tesofensine is a novel monoamine reuptake inhibitor that inhibits both norepinephrine, 5-HT, and dopamine (DA) reuptake function. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong effect in obesity management is not clarified. Using a rat model of diet-induced obesity (DIO), we characterized the pharmacological mechanisms underlying the appetite suppressive effect of tesofensine. DIO rats treated with tesofensine (2.0 mg/kg, s.c.) for 16 days showed significantly lower body weights than vehicle-treated DIO rats, being reflected by a marked hypophagic response. Using an automatized food intake monitoring system during a 12 h nocturnal test period, tesofensine-induced hypophagia was investigated further by studying the acute interaction of a variety of monoamine receptor antagonists with tesofensine-induced hypophagia in the DIO rat. Tesofensine (0.5–3.0 mg/kg, s.c.) induced a dose-dependent and marked decline in food intake with an ED50 of 1.3 mg/kg. The hypophagic response of tesofensine (1.5 mg/kg, s.c.) was almost completely reversed by co-administration of prazosin (1.0 mg/kg, α1 adrenoceptor antagonist) and partially antagonized by co-administration of SCH23390 (0.03 mg/kg, DA D1 receptor antagonist). In contrast, tesofensine-induced hypophagia was not affected by RX821002 (0.3 mg/kg, α2 adrenoceptor antagonist), haloperidol (0.03 mg/kg, D2 receptor antagonist), NGB2904 (0.1 mg/kg, D3 receptor antagonist), or ritanserin (0.03 mg/kg, 5-HT2A/C receptor antagonist). Hence, the mechanism underlying the suppression of feeding by tesofensine in the obese rat is dependent on the drug's ability to indirectly stimulate α1 adrenoceptor and DA D1 receptor function
    corecore