277 research outputs found

    Optical and electrochemical properties of hydrogen-bonded phenol-pyrrolidino[60]fullerenes

    Get PDF
    We report the photophysical and electrochemical properties of phenol-pyrrolidino[60]fullerenes 1 and 2, in which the phenol hydroxyl group is ortho and para to the pyrrolidino group, respectively, as well as those of a phenyl-pyrrolidino[60]fullerene model compound, 3. For the ortho analog 1, the presence of an intramolecular hydrogen bond is supported by 1H NMR and FTIR characterization. The redox potential of the phenoxyl radical-phenol couple in this architecture is 240 mV lower than that observed in the associated para compound 2. Further, the C60 excited-state lifetime of the hydrogen-bonded compound 1 in benzonitrile is 260 ps, while the corresponding lifetime for 2 is identical to that of the model compound 3 at 1.34 ns. Addition of excess organic acid to a benzonitrile solution of 1 gives rise to a new species, 4, with an excited-state lifetime of 1.40 ns. In nonpolar aprotic solvents such as toluene, all three compounds have a C60 excited-state lifetime of ∼1 ns. These results suggest that the presence of an intramolecular H-bond in 1 poises the potential of phenoxyl radical-phenol redox couple at a value that it is thermodynamically capable of reducing the photoexcited fullerene. This is not the case for the para analog 2 nor is it the case for the protonated species 4. This work illustrates that in addition to being used as light activated electron acceptors, pyrrolidino fullerenes are also capable of acting as built-in proton-accepting units that influence the potential of an attached donor when organized in an appropriate molecular design.Fil: Moore, Gary F.. Lawrence Berkeley National Laboratory; Estados Unidos. Arizona State University; Estados UnidosFil: Megiatto, Jackson D.. Arizona State University; Estados UnidosFil: Hambourger, Michael. Arizona State University; Estados Unidos. Appalachian State University (appstate);Fil: Gervaldo, Miguel Andres. Arizona State University; Estados Unidos. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Kodis, Gerdenis. Arizona State University; Estados UnidosFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Gust, Devens. Arizona State University; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados Unido

    Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation

    Get PDF
    In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF 10•+-TCNP•-. A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.Fil: Megiatto, Jackson D.. Arizona State University; Estados UnidosFil: Antoniuk Pablant, Antaeres. Arizona State University; Estados UnidosFil: Sherman, Benjamin D.. Arizona State University; Estados UnidosFil: Kodis, Gerdenis. Arizona State University; Estados UnidosFil: Gervaldo, Miguel Andres. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Moore, Thomas A.. Arizona State University; Estados UnidosFil: Moore, Ana L.. Arizona State University; Estados UnidosFil: Gust, Devens. Arizona State University; Estados Unido

    Solar cells sensitized with natural dyes: an introductory experiment about solar energy for undergraduate students

    Get PDF
    An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgarisL.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgarisL.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).v. 38n.101357136

    Phosphonium polymers for gene delivery

    Get PDF
    Phosphonium salt-containing polymers have very recently started to emerge as attractive materials for the engineering non-viral gene delivery systems. Compared to more frequently utilised ammonium-based polymers, some of these materials can enhance binding of nucleic acid at lower polymer concentration, and mediate good transfections efficiency, with low cytotoxicity. However, for years one of the main hurdles for their widespread application has been the lack of general routes for their synthesis. To date a range of polymerisation techniques have been explored, with the majority of them focussing on radical polymerisation, especially controlled radical polymerisation (CRP) techniques – ATRP, NMP and RAFT polymerisation - both by polymerisation of phosphonium monomers or by post-polymerisation modification of polymer intermediates. This review article aims at discussing key differences and similarities between phosphonium-and other analogous cations, how these affect binding to polynucleotides, and will provide an overview of the phosphonium polymer systems that have been utilised for gene delivery

    Interlocked Systems In Nanomedicine.

    No full text
    The concept of Nanomedicine emerged along with the new millennium, and it is expected to provide solutions to some of modern medicine's unsolved problems. Nanomedicine offers new hopes in several critical areas such as cancer treatment, viral and bacterial infections, medical imaging, tissue regeneration, and theranostics. To explore all these applications, a wide variety of nanomaterials have been developed which include liposomes, dendrimers, nanohydrogels and polymeric, metallic and inorganic nanoparticles. Recently, interlocked systems, namely rotaxanes and catenanes, have been incorporated into some of these chemical platforms in an attempt to improve their performance. This review focus on the nanomedicine applications of nanomaterials containing interlocked structures. The introduction gives an overview on the significance of interdisciplinary science in the progress of the nanomedicine field, and it explains the evolution of interlocked molecules until their application in nanomedicine. The following sections are organized by the type of interlocked structure, and it comprises details of the in vitro and/or in vivo experiments involving each material: rotaxanes as imaging agents, rotaxanes as cytotoxic agents, rotaxanes as peptide transporters, mechanized silica nanoparticles as stimuli responsive drug delivery systems, and polyrotaxanes as drug and gene delivery systems.151236-125
    • …
    corecore