8 research outputs found

    Strategic Audit Report Pfizer – Brand-Name Pharmaceutical Manufacturing (U.S.)

    Get PDF
    The purpose of this strategic audit report is to provide an in-depth analysis of different aspects of Pfizer Inc.’s business operations and an overview of the different types of strategies that Pfizer employs within the Brand-Name Pharmaceutical Manufacturing Industry. The audit contains analyses of the company’s history and strategic leadership strategies, external environment, internal environment, performance, and competitive dynamics. These aspects are examined to provide a foundation for further analysis of Pfizer’s strategies in the context of the environment. This report also analyzes the company’s business and corporate-level strategies, the impact of recent mergers and acquisitions, corporate governance practices, and organizational structures and controls. Through these analyses, we concluded that Pfizer’s recent strategic decisions have been good choices for the company’s future plans

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® were well correlated with sonication. Two other methods, Bugbuster® and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability

    Experimental mapping of soluble protein domains using a hierarchical approach

    Get PDF
    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained

    A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association

    Get PDF
    International audienceMonitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/ or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence

    Prevalence of Low Energy Availability in Collegiate Women Soccer Athletes

    No full text
    (1) Background: Limited information exists on the prevalence of low energy availability (LEA) in collegiate team sports. The purpose of this study was to examine the prevalence of LEA in collegiate women soccer players. (2) Methods: Collegiate women soccer athletes (n = 18, height: 1.67 ± 0.05 m; body mass: 65.3 ± 7.9 kg; body fat %: 24.9 ± 5.6%) had their body composition and sport nutrition knowledge assessed in the pre-season. Energy availability was assessed mid-season using a 4-day dietary log and activity energy expenditure values from a team-based monitoring system. A validated screening tool was used to screen for LEA. (3) Results: The screening tool classified 56.3% of athletes as at risk of LEA (&lt;30 kcal/kg of FFM); however, the actual dietary intake identified 67% as LEA. Athletes identified as non-LEA consumed significantly more absolute (p = 0.040) and relative (p = 0.004) energy than LEA athletes. (4) Conclusions: There was a high prevalence of LEA among collegiate women soccer athletes. Although previously validated in women endurance athletes, the LEA screening tool was not effective in identifying those at risk of LEA in this sample of athletes.</jats:p

    Prevalence of Low Energy Availability in Collegiate Women Soccer Athletes

    No full text
    (1) Background: Limited information exists on the prevalence of low energy availability (LEA) in collegiate team sports. The purpose of this study was to examine the prevalence of LEA in collegiate women soccer players. (2) Methods: Collegiate women soccer athletes (n = 18, height: 1.67 &plusmn; 0.05 m; body mass: 65.3 &plusmn; 7.9 kg; body fat %: 24.9 &plusmn; 5.6%) had their body composition and sport nutrition knowledge assessed in the pre-season. Energy availability was assessed mid-season using a 4-day dietary log and activity energy expenditure values from a team-based monitoring system. A validated screening tool was used to screen for LEA. (3) Results: The screening tool classified 56.3% of athletes as at risk of LEA (&lt;30 kcal/kg of FFM); however, the actual dietary intake identified 67% as LEA. Athletes identified as non-LEA consumed significantly more absolute (p = 0.040) and relative (p = 0.004) energy than LEA athletes. (4) Conclusions: There was a high prevalence of LEA among collegiate women soccer athletes. Although previously validated in women endurance athletes, the LEA screening tool was not effective in identifying those at risk of LEA in this sample of athletes
    corecore