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OXYTOCIN, DOPAMINE, AND THE NEUROMODULATION OF MATING 

BEHAVIOR IN C. ELEGANS 

Meghan Aileen Lockard, Ph.D.  

The Rockefeller University 2019  

FORWARD: This is Water1. 

“What a chimera then is man! What a novelty!  
What a monster, what a chaos, what a contradiction, what a prodigy! 

 Judge of all things, imbecile worm of the earth; 
 depositary of truth, a sewer of uncertainty and error;  

the pride and garbage of the universe!”  
-Blaise Pascal, Pensees #434 

The plot arc of Thomas Mann’s The Magic Mountain2 mirrors the writing process 

of its author.  Hans Castrop, the novel’s protagonist, is a perfectly healthy man at the 

beginning of the book. He plans to visit his cousin in a tuberculosis sanitarium for 3 

weeks…and ends up staying 7 years. By the end of his stay, Castrop is fever-stricken and 

has a spot on his lung, perhaps real and perhaps imaginary.  Thomas Mann himself first set 

out to write a short story. By the end of The Magic Mountain, he ended up writing a 

sprawling tome of more than 1,200 pages.   

I often think of Castrop when I ask myself, why would someone with no academic 

ambitions spend more than 7 years at a high-powered research institute working toward a 

Ph.D. in Neural Circuits and Behavior?  Why did someone without tuberculosis spend 7 

years in a sanitarium? Like Castrop, I did so because I fell in love.  Castrop falls in love 

1 The subtitle of this section is borrowed from David Foster Wallace’s last 
commencement “Howdy boys! How’s the Water?” After he departs, the two younger fish 
look at each other, while one asks, “What is Water?” I love that joke. I love that speech.  
2 Mann, T. The Magic Mountain. Tr. H. T. Lowe-Porter. Victoria, BC., Canada : Dead 
Authors Society, 2016, 1924. 



with a pair of “Kirghiz- shaped eyes” belonging to the estranged wife of a Russian officer.   

I fell in love with the Ethologist’s eye: the viewpoint that our innate instincts, motivations, 

and drives, are both common in mechanism between ourselves and other animals generally, 

and that they are primal to everything we feel, think, say, and do.   

 Also, like Castrop, this love was not a recent development, but was prefigured 

during my early school years by a chance encounter.  For him, it was an attractive Russian 

schoolmate who once handed him a pencil.  For me it was Helen Keller’s memoir The Story 

of My Life3.  At the age of ten, my father gave it to me because I was trying out for the role 

of Helen in the local community theatre’s production of The Miracle Worker4.  I didn’t get 

the part (small town politics), but what I did receive from Helen’s story awakened 

something in “…my soul, gave it light, hope, joy, set it free!” 

 For those who are not familiar with her story, Helen goes deaf and blind as an infant 

after contracting scarlet fever. In Chapter 4, she describes the moment her teacher Anne 

Sullivan led her to the “wellspring of language.” They were out walking by a stream when 

Anne reaches one of Helen’s hands into the waters and signs W-A-T-E-R into the other.  

In this moment for the first time Helen connects the word “water” as signifying the 

substance she is feeling.  She describes it “…as if Anne had shown [her] the location of a 

spring within herself out of which flowed a stream… that nourished the flowers…” of a 

well-cultivated inner life on its banks.  If you follow this internal spring, as Helen describes, 

it becomes larger.  The spring becomes a creek, the creek a stream, the stream a river, and 

as the flow grows larger, you get places where the water becomes placid and calm.  In these 

                                                      
3 Keller, H. and Sullivan, A. The Story of My Life. Garden City, New York : Doubleday 
& Company, Inc., 1954. 
4 Gibson, W. The Miracle Worker. New York : Scribner, 2008. ©1988 



pools, according to Helen, the river reflects the surroundings of itself, abstract ideas and 

concepts such as love, pity, courage, compassion, sacrifice, etc.  

 Helen knew what water was, and I wanted to know, too.  Through my idiosyncratic 

career path from a Classics major in college, to a wilderness adventure guide, to a National 

Laboratory technical staff member, and now as a single mother neurobiology graduate 

student at Rockefeller, this has been the central question of my life: what exactly is this 

spring within us that Helen describes? 

 I had something of an epiphany with regard to this when I joined the Bargmann lab 

in September 2012. Cori lent me her copy of The Study of Instinct by Nikolaas Tinbergen, 

required reading for newly minted members of the lab.  In it, Tinbergen illustrates the 

properties of what ethologists refer to as releasers and the innate releasing mechanism, 

postulated to be the formal mechanism by which ritualistic instinctual behaviors (such as 

mating, courtship, nesting, grooming, animal contests, etc.) are organized and governed.  

Releasers are spontaneous. They are “unlocked” by very specific and simple sign stimuli, 

sensory cues found in the natural environment of the animal and associated with the 

specific context of the behavior released.  Today, in a world post-behavioral genetics, 

releasers are not merely a priori hypotheticals but material truths: neuromodulators, that 

is, the “non-classical” neurotransmitters and neuropeptides whose action is not restricted 

to their local synapse, but can act over larger distances and longer time-spans.   

Helen’s internal spring may be the innate releasing mechanism that the classical 

ethologists describe. It trickles spontaneously, but Helen’s awareness of it, her ability to 

follow it and unlock her inner world of language and intellect, needed to be released by a 



particular constellation of sign stimuli: the stream, her hand, the bond between her and 

Ann.  

 One of the more infamous releasers is the neuropeptide oxytocin.  Known to 

medical research since the early 20th century for inducing labor contractions, oxytocin leapt 

into the forefront of our collective psyche in the 1990s, after Thomas Insel’s group at the 

NIH showed it to be a modulator of pair bonding in two closely related species of voles. 

At long last, here was the “love molecule,” the “elixir of love,” the venom on the tip of 

cupid’s arrow.   

 It is seductive to revert to these mythological archetypes. Yet, anyone who has 

carefully reflected on either the evidence of the Insel group’s experiments or their own 

experience of love would come to the conclusion that “love” could not possibly be a 

molecule, that in fact the concept of a “love potion” only captures the spontaneous nature 

of love, and not the activity of love: love as the participle, “loving,” “love-making,” the 

way “love grows where my Rosemary goes…”5 

Love is a behavior. Behavior emerges at the circuit level, not the molecular. It 

carries out a work cycle.  It feeds back, feeds forward, modulates and changes over time. 

Oxytocin is a releaser for that behavior. But, is all oxytocin-released behavior, “love”? 

That is to ask, is it all of the same kind? Or is the behavior “bonding?” Is Helen’s spring 

oxytocin? If so, it would make sense then that her next words, as reported in her memoir 

later that day, were mother, father, sister, teacher.   Is Helen’s spring even a releaser in the 

ethological sense at all, this source of why we learn and laugh and love and create? Or is 

                                                      
5 From the chorus of “Love Grows” by Edison Lighthouse, Album: On the Rocks. 
Released 1981. 



Helen’s spring and Tinbergen’s releasers something more primal that subtends all of these? 

Is it the very water we swim in? Is it because of this water, this moisture, that I now have 

this damn spot on my lung? 

While these are clearly philosophical questions that I am unprepared to definitively 

answer, one of the most profound notions we inherit from the classical ethologists is that 

we do not really know to what extent philosophical questions can be scientifically tractable, 

so we might as well try. This thesis is an attempt to begin to investigate broader questions 

about our experience of the innate and motional and the role oxytocin plays in our 

experience of the world by investigating oxytocin’s fundamental relationship to its 

behavioral circuit in the spirit of the ethologists. In the four modalities of analysis that 

Tinbergen describes: mechanistic, ontological, functional, and phylogenetic, I look at both 

the “how” and the “why” of oxytocin as a releaser of reproductive behavior.  To do so, I 

take the wide view across 600 million years of metazoan evolution, focusing on the 

oxytocin-mediated mating behavior and physiology of the often-overlooked invertebrates.  

By looking to these simpler animals with both smaller, paired-down nervous systems and 

more diverse sets of mating strategies, I elucidate some of the basic and general principles 

of the oxytocin circuit (Chapter I). In Chapter II, I give a survey of the ethology of 

Caenorhabditis (nematode roundworms) mating behavior, before I delve into the 

experimental investigation of the oxytocin-mediated mating circuit of Caenorhabditis 

elegans. The compact, fully anatomically diagrammed nervous system of this organism 

makes it an ideal model for this study, as do the multitude of genetic, molecular, 

pharmacogenic, optogenetic, and imaging tools available for C. elegans.  The singular most 

critical feature of this animal this study exploits, however, is that I can constitutively knock 



out the gene for its oxytocin homolog, nematocin, without compromising the health, 

development, or general locomotion of the animal.  

 In Chapter III, I show that the main source of nematocin in the male’s copulatory 

apparatus (his tail), the interneuron DVA, has activity during mating that is critical for 

carrying it out competently.  I do this by acutely silencing DVA with a heterologous 

histamine-gated chloride channel and its ligand just prior to mating, then by restoring 

mating by letting the males recover off histamine.  The experiment is repeated in the 

nematocin-deficient males, to identify which of the behavioral phenotypes are nematocin-

mediated, and which are not. Next, I discuss a genetic candidate screen to look for a 

mechanism of nematocin action (Chapter IV). I find that nematocin mutants are epistatic 

to dopamine mutants, implicating them in the same circuit.  The classical interpretation of 

the genetic result suggests that the severe defect in dopamine deficient animals is due to a 

dysregulation of nematocin.  I then rescue mating in dopamine-deficient males by acutely 

silencing DVA to corroborate this.  

In Chapter V I investigate the activity of DVA during mating with the fluorescent 

calcium indicator GCaMP.  I describe an activity pattern for DVA that coordinates calcium 

signal rises and falls with specific sub-behaviors within the mating behavior.  I then look 

at DVA in nematocin deficient and dopamine-deficient males, and find that DVA activity 

breaks down at behavioral junctures consistent with the genetic behavioral data.  

In Chapter VI I identify 2 dopamine receptors responsible for communicating the 

dopamine signal to DVA, one of which is a D1-like receptor (cAMP activating) and the 

other of which is a D2-like receptor (cAMP suppressing), and demonstrate their reciprocal 

effects on mating behavior. In Chapter VII, I summarize the experimental results, 



contextualize the main implications, and generally discuss oxytocin and dopamine’s deep 

phylogenetic connection in modulating reproductive behavior. 

Early in his stay on the Magic Mountain, Hans Castrop attends a lecture called 

“Love as a Pathogenic Force.” The entire audience is diagnosed as the victims of love. 

“Symptoms of disease are nothing but a disguised manifestation of the power of love; and 

all disease is only love transformed.” Castrop is convinced of the truth in this. Madly in 

love, he stays at the sanitarium for even the possibility that he might see the object of his 

desire at mealtimes. I am less convinced. I think The Magic Mountain is a story about 

“situatedness” and how we respond to it. It is about how some things, like falling in love… 

or motherhood… … or trauma …or world wars … or grad school… just happen and there 

is no way to predict or intellectualize them. But they change everything, and we have to 

respond to.  This is my response.  

This is Water. 
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CHAPTER I: OXYTOCIN MEDIATED BEHAVIOR IN INVERTEBRATES, AN 

EVOLUTIONARY PERSPECTIVE 

Introduction 

The observation that instinctive behaviors evolve together with morphological 

traits is as old as the theory of evolution itself. In his chapter “Instinct” in On the Origin of 

Species, Charles Darwin wrote, “The canon of ‘Natura non facit saltum’ [‘Nature does not 

make leaps’] applies with almost equal force to instincts as to bodily organs (Darwin, 

1871).” About a century later, the naturalist Wolfgang von de Wall demonstrated with 

dabbling duck hybrids that innate behaviors sometimes follow the laws of inheritance. He 

reported that the F1 progeny resulting from the cross of two compatible but distinct duck 

species demonstrated courtship behavior patterns that appeared either intermediate 

between those of the two parental species, or related to ancestral courtship behaviors not 

seen in either parental species (Von de Wall, 1963). Today, it is widely accepted that many 

animal species have innate feeding, foraging, quiescence, and reproductive behaviors that 

result from genetic programs, resembling each other across species or showing stereotypy 

within a species (Konopka and Benzer, 1971). Despite being “hard-wired” into the genome, 

many of these behaviors also show a tremendous amount of plasticity, in some cases 

changing dramatically within a species in different environmental contexts (Tinbergen, 

1951), and also between closely related species (Winslow et al., 1993). Both the stereotypy 

and the plasticity of behavior can be viewed from the standpoint of evolutionary biology, 

in which new biological functions arise by modifying existing functional systems. What, 

then, are the genes that provide the raw material for the rich, variable, and essential 

behaviors that promote animal survival and reproduction?        
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Figure 1.1: Phylogenetic tree for oxytocin-related peptides in metazoans. Top: Animal 

lineage names. Reference numbers are provided for ease of identifying lineages discussed 

in the manuscript. † indicates lineages represented in Table 1. Colors indicate the presence 

or absence of oxytocin-related peptide(s) in the lineages. Black lineages may precede the 

initial appearance of oxytocin-related peptides. Red lineages have high-confidence 

secondary loss of the peptide, where the absence of a homologous peptide has been 

experimentally validated and previously published. Dotted red lines mark lineages that are 

newly-inferred candidates for secondary loss of the oxytocin peptide gene; they are high-

quality, thoroughly annotated genomes that yielded no homologous peptides in BLAST 

searches. Gray lineages yielded no homologous peptides in a BLAST search, but are 

composed of genomes of unknown quality. Blue lineages represent those where the 

existence of a single oxytocin-related peptide sequence has been validated. Purple marks 

lineages in which the oxytocin homolog has undergone a duplication event. Landmark 

clades are labeled in black font. 
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Some of the strongest insights into conservation and plasticity in behavioral 

genetics have emerged from studies of the oxytocin/arginine-vasopressin neuromodulatory 

system. Peptides related to oxytocin and vasopressin (henceforth, “oxytocin-related 

peptides”) are encoded in the genomes of animal species separated by 600 million years of 

evolution (Gwee et al., 2009), including invertebrate nematodes (Beets et al., 2012; 

Garrison et al., 2012), insects (Egekwu et al., 2014; Gruber and Muttenthaler, 2012; Proux 

et al., 1987; Stafflinger et al., 2008), annelids (Fujino et al., 1999; Oumi et al., 1996; 

Wagenaar et al., 2010), and molluscs (Bardou et al., 2009; Takuwa-Kuroda et al., 2003; 

Van Kesteren et al., 1995a); as well as vertebrate fish (Godwin and Thompson, 2012), 

amphibians (Searcy et al., 2011), reptiles (Kabelik and Magruder, 2014; Kawazu et al., 

2014), birds (Kelly and Goodson, 2014), and mammals (Donaldson and Young, 2008; 

Stoop, 2014) (Figure 1.1). In almost all species in which they have been studied, oxytocin-

related peptides have been implicated in behaviors related to reproduction, such as mate 

selection (Insel et al., 1998; Wagenaar et al., 2010), copulation (De Boer et al., 1997; 

Garrison et al., 2012; Melis and Argiolas, 2011), and provisioning for offspring (Marlin et 

al., 2015). In a few cases, oxytocin-related peptides are also implicated in learning and 

memory (Bardou et al., 2010a; Beets et al., 2012; Oettl et al., 2016; Sarnyai and Kovacs, 

2014) and in other non-reproductive behaviors (Dutertre et al., 2008; Martinez-Padron et 

al., 1992) (Table 1). Oxytocin’s role in reproductive behavior across a variety of species 

with diverse reproductive strategies implies that the system can be remodeled by relatively 

small genetic changes while maintaining a core function. The study of oxytocin’s genetic 

and functional conservation provides a unique opportunity to explore how ancient, slowly 

evolving genes can generate rapidly evolving behaviors.  
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Table 1. Oxytocin-mediated behavioral functions in invertebrates. Species name, 

peptide name, peptide sequence, behavior, evidence, and reference are provided for all 

invertebrate species with a known oxytocin mediated behavior. Homo sapiens provided at 

the bottom for reference. * in the peptide sequences indicates C-terminal amidation. 

 

In this chapter we focus on oxytocin-related peptides in invertebrate animals 

(Gruber, 2014). The relatively short lifespans, rapid reproductive cycles, and compact 

nervous systems of many invertebrates provide experimental advantages that have been 

exploited since the dawn of neuroscience (Hodgkin and Huxley, 1990). Invertebrates also 

use an impressive diversity of breeding systems. While only a few vertebrate species 

deviate from dioecious (male-female) sexual reproduction (Senior et al., 2012), 

invertebrates draw broadly from reproductive strategies such as hermaphroditism (ter 

Maat, 1992), androdioecy (Chasnov, 2010), parthenogenesis (Whitfield and Evans, 1983), 
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and dedicated reproductive castes (Wilson and Holldobler, 2005). Observing the roles of 

oxytocin-related peptides in these different contexts reveals both flexibility and constraints 

on this ancient neuromodulatory system.  

 

Peptide Expression 

In Figure 1.1, we summarize the current understanding of animal lineages with 

peptides homologous to oxytocin. Oxytocin-related peptides are only 9-13 amino acids 

long, but can be reliably recognized in genomic sequences based on the presence of several 

features: two cyclizing cysteines at positions 1 and 6 of the translated peptide (Gruber, 

2014); and an adjacent, highly conserved, cysteine-rich neurophysin domain that is thought 

to assist in folding, processing, and peptide localization to the dense core vesicles (de Bree, 

2000). Semmens et al. have suggested that oxytocin/vasopressin peptides are part of a much 

larger family, including the vertebrate neuropeptide-S (NPS) and crustacean cardio-active 

peptide (CCAP), where the CCAP-like peptide found in protostomes lost the neurophysin 

domain, and the NPS-like peptides in deuterstomes lost the 1,6 cysteine disulfide bond first 

and later, after the divergence of Echinodermata, also lost the neurophysin domain 

(Elphick and Rowe, 2009; Semmens et al., 2015). In many lineages, both the presence of 

an oxytocin-related peptide in the genome and the expression of a mature peptide have 

been experimentally validated via transcriptional analysis (Egekwu et al., 2014), 

immunostaining (Bardou et al., 2009), genetics, and/or proteomics (Beets et al., 2012; 

Garrison et al., 2012). In others, we identified homologs by iterative NCBI BLAST 

searches. While the presence of the peptide’s gene in the genome does not necessarily mean 

that a cyclized, mature peptide with functional receptors is made by the organism, peptide 
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sequence homology serves as the best available proxy for determining which lineages have 

the oxytocin neuromodulatory system, defined as a functional, mature peptide with one or 

more functional receptors.   

We used BLAST sequence homology to the oxytocin-related peptide annetocin 

from the earthworm Eisenia foetida (Oumi et al., 1996) (Table 1) to identify a peptide 

homolog in the ecdysozoan Atlantic horseshoe crab Limulus polyphemus (Figure 1.1: #9) 

and in the lophotrochozan brachiopod Lingua anatina (Figure 1.1: #45). Both of these 

organisms can be considered “living fossils” in the sense that they have slowly evolving 

genomes (Luo et al., 2015; Nossa et al., 2014), which makes their gene sequences useful 

as queries for invertebrate-wide BLAST searches. Animal lineages labeled in blue in 

Figure 1.1 have a single gene that shows the hallmarks of an oxytocin-related peptide. 

Labeled in gray are lineages with incomplete genomes, where we were unable to determine 

whether an oxytocin-related peptide was present or absent. Labeled in red (high 

confidence) and red dotted lines (lower confidence) are lineages with well-annotated 

genomes that appear to have secondarily lost oxytocin-related peptides that were present 

in their ancestors. 

Oxytocin-related peptides emerged around the same time as bilateral symmetry in 

body plans: they are present across modern Lophotrochozoa (Fujino et al., 1999; Henry et 

al., 2013; Oumi et al., 1996; Takuwa-Kuroda et al., 2003; Wagenaar et al., 2010) (Figure 

1.1: #34-45), Ecdysozoa (Beets et al., 2012; Egekwu et al., 2014; Garrison et al., 2012; 

Gruber, 2014; Gruber and Muttenthaler, 2012; Proux et al., 1987; Stafflinger et al., 2008) 

(Figure 1.1: #3-30), and Deuterostomia (Elphick, 2012; Kawada et al., 2008; Semmens et 

al., 2015; Semmens et al., 2016) (Figure 1.1: #46-48). Neither the peptide nor its receptors 
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appear to be present in the earlier animal branches of Porifera and Cnidaria (Gruber, 2014) 

(Figure 1.1: #1-2), labelled black, or in any non-metazoan.  

 

Peptide Duplication 

  Gene expansion and contraction are common themes affecting oxytocin-related 

peptides and other neuropeptide families. The duplication of a single peptide to generate 

the oxytocin and vasopressin systems present in most vertebrates is thought to have 

occurred early in chordate history, after the emergence of jawless fishes (Gwee et al., 2009) 

(Figure 1.1: #48). It appears that one peptide gene was lost in the teleost fish lineage, and 

then a secondary duplication recreated two paralogs within the lineage, with selective 

receptors (Venkatesh and Brenner, 1995). In the Cephalapoda lineage of molluscs, a dual 

peptide system also emerged independently of these vertebrate duplications (Figure 1.1: 

#43). Both the common octopus Octopus vulgaris and the cuttlefish Sepia officinalis have 

two different oxytocin homologs: in octopus, cephalatocin and octopressin (Takuwa-

Kuroda et al., 2003); and, in cuttlefish, sepiatocin and pro-sepiatocin (Henry, et al. 2013) 

(Table 1). As in the vertebrates, the two peptides present in these cephalopod species 

appear to be non-redundant, having preferential receptors (Kanda et al., 2005; Kanda et al., 

2003) and different expression patterns (Bardou et al., 2009; Bardou et al., 2010b). Most 

interestingly, the peptides seem to have distinct functions from one another within the 

animal. In O. vulgaris, octopressin perfusion causes contractions in the peripheral tissues 

such as the oviduct, aorta, rectum, efferent branchial vessel, and spermatophoric gland, 

whereas cephalatocin had no effect on these tissues (Takuwa-Kuroda et al., 2003). 

Contractile activity on non-neuronal tissue is also a prominent feature of vertebrate 
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oxytocin (e.g. uterine contraction, milk let-down response) (Coria-Avila et al., 2014) and 

vasopressin (e.g. blood vessel contraction) (Wang et al., 2000). Similarly, in S. officinalis, 

sepiatocin induced contractile activity in tissues from the oviduct, accessory sex glands of 

females, penis, vena cava, gills, and rectum, while pro-sepiatocin conferred no such activity 

(Henry et al., 2013).  Cephalopods have rapidly expanding genomes and the largest nervous 

systems in invertebrates (Albertin et al., 2015). Considering evidence that cephalotocin 

enhances long-term memory in the S. officinalis (see below), we speculate that duplication 

and diversification of the oxytocin neuromodulatory system and other neuronal genes in 

cephalopods may have contributed to the evolution of impressive cognitive abilities that 

rival those of many vertebrates (Hochner, 2010; Zarrella et al., 2015).   

 

Secondary Peptide Losses 

The instances where the oxytocin peptide was lost from a lineage are as interesting 

as those in which it was retained or duplicated, and raise just as many questions. In 

flatworms and rotifers, it appears that oxytocin loss accompanied a global reduction in 

complexity of these animals (Riddiford and Olson, 2011). Oxytocin-related peptides 

appear to be absent from the genomes of Platyhelminthes (flatworms, e.g. Schmidtea 

mediterranea) and Rotifers (“wheel animals,” e.g. Brachionus manjavacas) (Figure 1.1: 

red dotted line #36-37). These lineages have a reduced dependence on mating for 

reproduction. Bdelloid rotifers have lost the ability to reproduce sexually (Stelzer et al., 

2010). Other species of rotifers reproduce sexually under certain environmental conditions, 

though parthenogenesis is much more common (Gladyshev and Arkhipova, 2010). 

Planarian flatworms such as S. mediterranea are simultaneous hermaphrodites, possessing 
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both male and female genitalia, and are capable of both sexual reproduction and 

parthenogenesis. Some natural variants are known to be parthenogenetic exclusively, and 

others switch to an outcrossing strategy with some frequency (D'Souza and Michiels, 2008; 

Lazaro et al., 2011).  

Retaining sexual reproduction and the behavioral requisites for successful mating, 

however, cannot be the sole guiding principle governing the retention of the oxytocin-

related peptides. Androdioecious (hermaphrodites and rare males) nematode species such 

as Caenorhabditis elegans have retained an oxytocin-related peptide with functional 

receptors (Beets et al., 2012; Garrison et al., 2012) (Figure 1.1: #6) while relying on self-

fertilization as their primary reproductive strategy (Anderson et al., 2010; Morran et al., 

2009). Conversely, arthropods have some of the most intricate and complex courtship 

behaviors among invertebrates (Herberstein et al., 2014; Yamamoto and Koganezawa, 

2013), and yet there have been several instances of secondary loss of the oxytocin peptide 

in these lineages (Stafflinger et al., 2008) (Figure 1.1: red). In arachnids, oxytocin-related 

peptides are present in the Atlantic horseshoe crab Limulus polyphemus (mentioned above), 

and the Acari lineage (Figure 1.1: #13), which includes ticks and mites (Egekwu et al., 

2014). However, the peptide is apparently absent in the well-annotated social velvet spider 

(Stegodyphus mimosarum) genome and the less well-annotated white knee tarantula 

(Acanthoscurria geniculate) genome (Sanggaard et al., 2014), both in the Araneae lineage 

(Figure 1.1: red dotted line, #14). In insects, oxytocin-related peptides are present in the 

orthopteran Locust migratoria (Proux et al., 1987) (Figure 1.1: #19), in isopterans 

(termites) (Figure 1.1: #22), and in the coleopteran red flour beetle Tribolium castaneum 

(Stafflinger et al., 2008) (Figure 1.1: #24, Table 1), but no homologous peptide is present 
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in any of the 12 species of Drosophila with annotated genomes (Diptera), in the mosquito 

species Anopheles gambiae and Aedes aegypti (also Diptera), or the silk moth Bombyx 

mori (Lepidoptera) (Stafflinger et al., 2008), suggesting that the peptide was lost before 

the divergence of Lepidoptera and Diptera classes (Figure 1.1: red, #29-30). Another 

secondary loss among the holometabolous insects occurred in the lineage of the eusocial 

honeybee Apis mellifera (Figure 1.1: red, #28) after it diverged from the solitary wasps 

such as Nasonia vitripennis (Stafflinger et al., 2008) (Figure 1.1: blue, #27). The absence 

of oxytocin in eusocial bees may be the most counterintuitive loss in animals, given the 

complexity of their social behavior. Oxytocin is present, however, in other eusocial species 

within the lineage Formicidae, including the leaf-cutter ant Atta cephalotes, the carpenter 

ant Camponotus floridanus, and the basal ant Harpegnathos saltator (Gruber and 

Muttenthaler, 2012) (Figure 1.1: #25).  

Why the repeated loss of oxytocin-related peptides within a relatively constrained 

set of insect lineages, in the absence of behavioral simplification?  This evolutionary 

pattern suggests the existence of a second parallel system with overlapping functions to 

oxytocin, whose presence in this lineage allows the loss of an otherwise conserved oxytocin 

pathway.  The second pathway may act as a pre-adaptation to oxytocin loss. It is possible 

that another peptide has acquired reproductive functions in insects, or that a substitution of 

a completely different nature has emerged. 

 

Oxytocin receptors in invertebrates 

As in vertebrates, the oxytocin-related peptides in invertebrates activate target cells 

through G-protein coupled receptors (GPCRs) (Garrison et al., 2012; Kanda et al., 2003; 
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Stafflinger et al., 2008).  GPCRs usually modulate the activity of the target neurons through 

second messenger signaling cascades on biochemical timescales of seconds or minutes 

rather than directly depolarizing or hyperpolarizing the neurons (Hille, 1994). 

Consequently, oxytocin and other neuromodulatory systems follow a logic orthogonal to 

that of fast electrical and synaptic circuits: they reversibly modify the flow of information 

through fast circuits by transiently strengthening or weakening synaptic strength or 

excitability. 

 The ligand-receptor relationships between oxytocin-related peptides and their 

receptors are often inferred from homology, but have been validated by biochemical assays 

in heterologous systems for a few invertebrate species. Inotocin from the red flour beetle 

T. castaneum (Table 1) activates a predicted receptor at nanomolar effective 

concentrations (Stafflinger et al., 2008). O. vulgaris cephalotocin activates the 

cephalocotin receptor (CTR2) while octopressin activates the octopressin receptor (OPR) 

when heterologously expressed in Xenopus oocytes (Kanda et al., 2003). These 

heterologous expression experiments help elucidate ligand-receptor relationships, but they 

are less useful for understanding the biochemical consequences of receptor action, because 

the foreign expression systems may not have the G proteins and signaling pathways that 

the receptor would encounter in its host organism and cell type. 

The significance of knowing the native signaling pathway is illustrated by the pond 

snail Lymnaea stagnalis (Table 1), which has a single oxytocin-related peptide receptor 

called Lys-conopressin receptor (LSCR) (van Kesteren et al., 1995b). Evidence suggests 

that the peptide signals through two pathways in its native context in the right cerebral 

ganglion (Figure 1.2: A): conopressin induces both a high-voltage activated (I-HVA) 
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pacemaker current via Protein Kinase C (PKC) and a low-voltage activated (I-LVA) 

pacemaker current by a mechanism that may involve cAMP (Van Soest et al., 2000).  

The Caenorhabditis elegans oxytocin-related peptide nematocin (Table 1) activates two G 

protein-coupled receptors, NTR-1 and NTR-2. Genetic knockouts of these receptors yield 

partial defects in mating behavior, less severe than those of nematocin peptide-deficient 

animals (see below).  Knocking out both receptors recapitulates the full mating defect of 

the peptide loss. Because C. elegans has a complete anatomical wiring diagram for its 

nervous system (Jarrell et al., 2012; White et al., 1986), the sites of peptide and receptor 

expression patterns inferred from reporter genes and immunocytochemistry can be 

compared to the anatomical circuits.  This comparison shows that the vast majority of 

nematocin receptor-expressing cells do not have direct synaptic connections to a peptide-

expressing cell (Beets et al., 2012; Garrison et al., 2012) (Figure 1.2: B), and therefore that 

nematocin must communicate extrasynaptically with its target cells.  

 

Lymnaea stagnalis: peptide partnership in male behavior 

Oxytocin’s functional role in reproduction has been deeply investigated in the pond 

snail L. stagnalis. Conopressin, the oxytocin–related peptide in gastropods, either directly 

or indirectly modulates every aspect of mating behavior in this species. L. stagnalis is a  

simultaneous hermaphrodite with genital positioning that makes self-insemination possible 

but cumbersome. L. stagnalis usually mates with a conspecific, where one partner assumes 

the role of “male,” or inseminator, and the other assumes the role of “female,” receiving 

the sperm for her eggs (Figure 1.3: A). Like the mating behavior of more complex animals, 

male mating behavior in L. stagnalis consists of a series of distinct sub-behaviors that are  
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Figure 1.2: Neuroanatomical sites of oxytocin production and action in selected 

invertebrates. A: Conopressin in the reproductive system of L. stagnalis. Left: Illustration 

of a dissected male gonopore. Right Top: The CNS of L. stagnalis.  Right Bottom: Right 

hemisphere of the CNS. Structures where conopressin is present are labeled in green. 

Ganglia targets of conopressin are labeled in blue. Adapted from Figure 1 in De Lange, et 

al. (1998). B: The nematocin neuromodulatory system in C. elegans. Top: Hermaphrodite 

with a detail of the head neurons. Bottom: Male with a detail of the tail neurons. Nematocin-

expressing neurons are labeled in green. NTR-1-expressing neurons are labeled in blue; 

NTR-2-expressing neurons in red; and neurons expressing both receptors in purple. 

Expression data combined from Garrison, et al. (2012) and Beets, et al. (2012) C: Body 

and anterior motor ganglia of the medicinal leeches. Ganglia responsible for the oxytocin-

driven CPG are labeled in blue and red. D: Dual peptide immunostaining of the S. 

officinalis CNS. Left: sub-esophogeal and supra-esophogeal ganglion. Right: Optic lobes. 

Top row: Immunostaining pattern using a mammalian oxytocin antibody in hunter green. 

Bottom row: Immunostaining pattern using a mammalian vasopressin antibody in teal 

green. Shade intensity is representative of the immunostaining density. Adapted from 

Figure 3 of Bardou, et al. (2009) E: Conopressin immunostaining of the CNS of A. 

californica. Peptide presence is labeled in green. Adapted from Figure 2 of Martinez-

Padron, et al. (1992)  
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coordinated in a specific temporal pattern, with the sub-behaviors varying in duration 

depending on the animal’s motivational state (Koene, 2010). First, the penile complex is 

everted and probes for the female gonopore. Once positioned correctly, intromission takes 

place and sperm is transferred from the seminal vesicles down the vas deferens and penis 

into the vagina. After sperm transfer, the retractor muscles revert the penile complex back 

into the snail (De Lange et al., 1998)(Figure 1.3: A).   

Conopressin is released from a cluster of neurons in the right anterior lobe (rAL) of 

the cerebral ganglia (Van Golen et al., 1995; Van Kesteren et al., 1995a) (Figure 1.2: A). 

Conopressin-positive fibers run throughout the male gonopore, including the penile nerve, 

the only nerve that innervates the penile complex (Van Kesteren et al., 1995a), the vas 

deferens (Van Golen et al., 1995), the prostate gland, and the region of the penis tip 

containing sensory neurons that detect successful vaginal penetration (De Lange et al., 

1998). Conopressin induces a subset of male mating responses such as spontaneous 

contractions in the vas deferens (Van Golen et al., 1995; Van Kesteren et al., 1995a), but 

it does not elicit full male mating behavior (De Boer et al., 1997). This is likely due to the 

fact that conopressin co-modulates the mating behavior of L. stagnalis with nine other 

peptides and the neurotransmitter serotonin (5HT) (De Lange et al., 1998). The most 

notable of these co-regulators is the APGW-amide peptide, which can induce eversion of 

penile structures and colocalizes with conopressin in the rAL neurons that show increased 

activity during penile eversion (De Boer et al., 1997; Van Golen et al., 1995) (Figure 1.2: 

A) (Figure 1.3: A). Co-release of APGW-amide and conopressin has the potential to 
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organize subsequent mating behaviors, with APGW-amide acting to evert the penile 

complex and conopressin acting to sensitize the penile tip for vaginal probing.     

Conopressin and APGW-amide may be co-released, but they have antagonistic 

effects on the vas deferens (Van Golen et al., 1995). Application of conopressin increased 

the number and  

frequency of spontaneous contractions in the vas deferens in a dose-dependent 

manner, whereas application of APGW-amide had a dose-dependent inhibitory effect on 

the posterior vas deferens (Van Golen et al., 1995). In this context, conopressin and 

APGW-amide appear to balance each other’s activity, not to synergize. 

Finally, conopressin inhibits female behavior. Immuno-positive axonal fibers run 

proximate to the caudodorsal cells (CDCs), neuroendocrine cells that release peptides 

association with egg-laying, egg mass production, and associated “female” reproductive 

behaviors. Bath application of conopressin resulted in the hyperpolarization of the CDCs 

and inhibition of their electrical activity, thereby preventing egg laying and its associated 

behaviors (Van Kesteren et al., 1995a).  

 

Caenorhabditis elegans: classical genetics and cell-level resolution of mating 

C. elegans is a free-living nematode that has been cultured in the laboratory as a 

genetic model organism since the 1960s (Brenner, 2009; Fitch, 2005). Most animals in the 

population are androdioecious hermaphrodites: “females” that transiently produce sperm, 

and therefore are capable of internally self-fertilizing. A small fraction of the population 

are males, which have dedicated structures in the tail for inseminating a hermaphrodite 

(Figure 1.2: B, Figure 1.3: B) (Ellis and Schedl, 2007; Haag, 2005). C. elegans males  
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Figure 1.3. Ethograms for oxytocin-mediated reproductive behaviors. A: 

Reproductive behavior in L. stagnalis (two hermaphrodites). Adapted from Jarne, P. et al. 

(2010). B: Mating behavior in C. elegans (male and hermaphrodite). In A and B, 

inseminating partners are labeled in gray, and egg-laying partners are labeled in brown. C: 

Reproductive behavior in medicinal leeches.  Adapted from Figure 1 in Wagenaar, et al. 

(2010). Two hermaphrodites are shown in different colors, but either or both partners might 

inseminate or subsequently lay eggs; it is unclear whether they take different roles in a 

single mating event. In B and C, arrow weight represents frequency of transition between 

the sub-behaviors during copulation. In A, data on transitions is not available, and, all 

arrow weights are the same by default. In C, the time frames of oviposition and cocoon 

deposition post-copulation are long, and the transition frequencies unknown. 

 

mate by progressing through a series of stereotyped sub-behaviors of variable duration, 

depending on the animal’s motivational state. Mating is initiated when the male makes 

contact with a hermaphrodite with the copulatory apparatus in his tail. (Figure 1.2: B, 
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Figure 1.3: B) Once contact is made, the male begins backing along the hermaphrodite, 

executing turns when he reaches the hermaphrodite’s head or tail, until he locates the vulva. 

Males sometime repeatedly slip back and forth along the hermaphrodite in the course of 

mating. The male then prods at the vulva while attempting to insert his needle-like spicules. 

Once the spicules are successfully inserted, sperm is released and flows into the 

hermaphrodite’s uterus (Barr and Garcia, 2006) (Figure 1.3: B).  

C. elegans mutants lacking nematocin or its receptors have striking defects in male 

mating behavior. Males deficient in the nematocin or nematocin receptor genes were 

capable of mating, but did so with decreased efficiency and sired fewer progeny. These 

animals spent more time in and cycling through the sub-behaviors leading up to successful 

sperm transfer; engaged in more non-productive behaviors, e.g. slipping along the 

hermaphrodite or prodding at stimuli other than the vulva; and more frequently abandoned 

the hermaphrodite before completion of mating (Garrison et al., 2012) (Figure 1.3: B). 

This evidence suggests that nematocin orchestrates the sub-behaviors of male mating to 

give the process coherence and momentum.  

The expression patterns for nematocin and its receptors in C. elegans are sexually 

dimorphic. The peptide is expressed in one head neuron, one tail neuron, the vulva motor 

neurons, and some male-specific motor neurons. The nematocin receptors are expressed in 

many male-specific neurons in the tail and many sensory neurons in the head that are 

common to both sexes (Figure 1.2: B). Thus nematocin receptors function both in 

anatomical circuits that are present only in the sexually mature male, and as components 

of circuitry that is shared by all developmental stages and both sexes. A single neuron, 

DVA, is the source of nematocin in the tail for both sexes. Males deficient in nematocin in 
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DVA recapitulated the majority of the mating defects in the knockout (Garrison et al., 

2012). As mentioned earlier, none of the receptor-expressing cells are reported to be post-

synaptic to DVA in the male C. elegans neural wiring diagram (Jarrell et al., 2012). Rather, 

DVA acts as a source for diffusible nematocin that may act on multiple target neurons in 

the region of the male tail.  

 

Annelids: both female and male behavior, and the underlying circuits  

The oxytocin-induced activity of parturition is remarkably conserved. In the hermaphrodite 

earthworm E. foetida, injection of the oxytocin-related peptide annetocin induces canonical 

behaviors associated with egg-laying (Oumi et al., 1996) (Table 1). These include mucus 

secretion, contraction of the clitellum (uterus), and body shape changes that accompany 

oviposition (elongation of anterior and posterior segments, and transverse expansion of the 

segments near the clitellum). Some animals even secreted a cocoon membrane and laid 

eggs. Notably, animals are susceptible to annetocin only during the breeding season (Oumi 

et al., 1996). Very similar effects on oviposition are induced by annetocin injection in the 

medicinal leech Whitmania pigra, another simultaneous hermaphrodite (Fujino et al., 

1999; Oumi et al., 1996) (Table 1, Figure 1.3: C).  

In another species of medicinal leech, the simultaneous hermaphrodite Hirudo 

verbana, oxytocin stimulates both the male and female components of reproductive 

behavior (Wagenaar et al., 2010) (Table 1, Figure 1.3: C). H. verbana mating is initiated 

by the animal flaring its mouth and twisting its body around its partner’s longitudinal axis. 

The leech scans its mate, confirming by taste that its partner is a conspecific, and precisely 

aligns the male and female gonopores (genitals) for insemination. After successful 
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copulation, one or both leeches deposit fertilized eggs in cocoons secreted by glands in the 

clitellum (Figure 1.3: C). Conopressin injection is a potent inducer of these mating 

behaviors even in the absence of a partner (Wagenaar et al., 2010). The time course of 

peptide action is slow: body twisting and mouth flaring began 10 minutes after injection; 

thrusting, resembling cocoon deposition, after 50 minutes (Figure 1.3: C). Twisting 

continued for up to 48 hours, suggesting very long-lasting peptide effects (Wagenaar et al., 

2010).  

Electrophysiological characterization in H. verbana has identified a conopressin-

controlled central pattern generator (CPG) circuit for the twisting motion that allows 

gonapore alignment. Oxytocin caused strong, bilaterally synchronized oscillations in motor 

neuronal activity with a period of 5-20 seconds.  These bursts varied in amplitude (stronger 

on the left, then stronger on the right) with a period of about 5 minutes (Wagenaar et al., 

2010) (Figure 1.2: C). In the isolated ganglia, oxytocin induced the strongest oscillations 

from the segments specialized for male (M5) and female (M6) genital functions. Although 

it does not control the motor pattern directly, the motor ganglion M4 showed weak but 

autonomous oscillations, suggesting that it may have a reproductive role as well (Figure 

1.2: C). The mechanistic basis of the slow five-minute oscillation is unknown, and an 

interesting topic for future study (Wagenaar et al., 2010).  

 

Gustatory associative learning in Caenorhabditis elegans  

The physiological role of vasopressin in fluid homeostasis in mammals is well 

established (Christ-Crain and Fenske, 2016). Invertebrates often use behavioral strategies 

in addition to internal regulatory systems to maintain physiological homeostasis. In C. 
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elegans, nematocin regulates salt homeostasis by modulating sensory neurons during 

gustatory associative learning (Beets et al., 2012), a behavior at the intersection of salt 

homeostasis and behavioral preference (Table 1). Nematocin receptors are expressed in 

several chemosensory neurons in the animal’s head that sense salt and other gustatory cues. 

C. elegans loses its attraction to low concentrations of sodium chloride after salt is 

associated with food deprivation (Appleby, 2012); animals deficient in nematocin or its 

receptor are defective in this form of learning. With the cell-level resolution possible in C. 

elegans, transgenic rescue implicated the otherwise uncharacterized interneuron AVK as 

the peptide source and the sensory neuron ASEL as its essential target for gustatory 

associative learning (Beets et al., 2012) (Figure 1.2: B).  

 

Long-term memory formation in Sepia officinalis  

At the opposite end of invertebrate complexity, the cuttlefish S. officinalis has a 

large brain size consistent with the notable cognitive abilities of cephalopods. In most 

animals, oxytocin-expressing neurons are localized to a few central areas, but in the 

decentralized nervous system of S. officinalis, oxytocin-producing neurons are scattered 

throughout the body (Henry et al., 2013) (Figure 1.2: D). The two oxytocin-related 

peptides of cuttlefish show overlapping but distinct expression patterns, and are present in 

the neural centers that are involved in learning, the vertical lobe complex and the optic 

lobes (Bardou et al., 2009) (Figure 1.2: D).  

 S. officinalis demonstrates cognitive learning abilities that modify innate 

behaviors. Hatchlings feed on the same kind of prey and use similar capture strategies as 

adults (von Boletzky, 2003). Gradual increases in prey capture behavioral plasticity and 
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learning occur simultaneously with the maturation of specific brain structures including the 

vertical lobe complex (Dickel et al., 2001). Notably, the number of cells that express 

oxytocin-related peptides increases dramatically in the vertical lobe complex and optic 

lobes in the timeframe that these behaviors mature (Bardou et al., 2010b).  

Direct functional evidence supports a role for oxytocin-related peptides in learning 

and memory. Intravenous injection of cephalotocin in to S. officinalis enhanced memory 

retention 24 hours after training in a passive avoidance task (learning not to strike its 

tentacles at inaccessible prey held in a glass tube). Octopressin enhanced memory retention 

at a low dose, but attenuated it at a high dose (Bardou et al., 2010a).  

 

Food arousal states in Aplysia californica 

In the gastropod sea slug Aplysia californica, an oxytocin-related peptide is present 

in the abdominal ganglion and in two neurons in the pedal ganglia, with axonal fibers 

running throughout the CNS (Martinez-Padron et al., 1992) (Figure 1.2: E). Application 

of conopressin to the abdominal ganglion suppressed the siphon-evoked gill withdrawal 

reflex, and increased the frequency of spontaneous gill movements. These two behavioral 

effects resemble the food-aroused state in A. californica (Martinez-Padron et al., 1992), 

but their full significance is unknown.  

 

Oxytocin as poison: proto-venom in Conus tulipa 

Evolution is opportunistic, making use of available tools to solve biological 

problems, and this principle applies to oxytocin-related peptides. The venomous marine 

conesnails Conus tulipa, Conus geographus, and Conus striatus all secrete variants of 



22 
 

conopressin in their venom, which suggests that these peptides act not on the snail but on 

its prey, e.g. teleost fish. Conopressin-T is a strong, selective antagonist to the human 

vasopressin receptor V1a and a weak agonist for both the vasopressin receptor V1b and the 

oxytocin receptor (Dutertre, et al. 2008). It is not yet known how conopressin-T affects the 

envenomed fish, but exogenously applied vasotocin causes reduced physical activity in a 

cichlid fish (Huffman et al., 2015). 

 

Summation 

Reproductive behavior is a common thread in the evolution of oxytocin from 

roundworms to humans. In some of the more extensively studied invertebrate species, such 

as L. stagnalis, C. elegans, and H. verbana, oxytocin seems to play a role in providing 

organization and coherence to a complex mating behavior (De Boer et al., 1997; Garrison 

et al., 2012; Wagenaar et al., 2010). This role is likely achieved through modulation of 

multiple circuits and through coordination with other neuromodulators, such as APGW-

amide in L. stagnalis. Oxytocin-like peptides can regulate mating behaviors in a sexually 

dimorphic manner, affecting one or both sexes, or helping a hermaphrodite switch between 

male and female behaviors. They can influence a particular behavior in opposite directions 

depending on the species: conopressin in L. stagnalis inhibits egg-laying, while annetocin 

in E. foetida, W. pigra, and H. verbana induces egg-laying.  

Oxytocin-related peptides show both conservation and plasticity in their functions 

among the invertebrates. The peptide and its receptors are found throughout Bilateria, 

undergoing secondary loss in some lineages (Figure 1.1). In Platyhelminthes and Rotifera, 

the loss seems to be accompanied by a global reduction in the complexity of the animal, 
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including the de-emphasis on sex as a reproductive strategy. On the other hand, in 

arthropods, the loss occurs in lineages that have some of the most complex courtship 

behavior among invertebrates. We speculate that oxytocin-related peptides help individual 

animals to choose between alternative reproductive pathways. The choice between 

alternatives (and therefore the requirement for oxytocin-related peptides) would be 

particularly important in animals with highly flexible mating strategies, like hermaphrodite 

invertebrates that show both male and female behaviors, as well as mammals with complex, 

context-dependent reproductive behaviors; it might be less important in animals with fixed 

mating strategies.  

Oxytocin-related peptides participate in learning and memory in cephalopods, and 

they drive both reproductive and learning behaviors in C. elegans.  In mammals, the 

reproductive and learning roles of oxytocin are directly linked:  pairing oxytocin with pup 

calls enhances neuronal responses to those calls in auditory cortex, thereby driving learning 

in maternal behavior (Marlin, et al. 2015). This example of coupled reproductive and 

learning roles shows how a single molecule, oxytocin, can drive increasingly more 

complex behaviors in complex brains. 

The receptors for oxytocin-related peptides are critical for understanding the 

mechanisms of the peptide’s function in behavior, and should be investigated more 

intensively in their natural settings in vivo. The well-defined invertebrate nervous systems 

can be exploited to ask which G protein signaling pathways and target molecules are 

regulated by the peptides, whether these signaling pathways are different in different 

neuronal circuits, and how receptor activation alters circuit function as a whole. 
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Although oxytocin can be a systemic signal – as it is in mammalian birth – most 

oxytocin signaling is likely to be regional, involving extrasynaptic diffusion to targets 

across various distances. Because extrasynaptic signaling does not require precise point-

to-point connectivity, it is intrinsically evolvable. Small genetic changes in cis-regulatory 

elements, such as promoters and enhancers, could lead to alteration in expression patterns 

of oxytocin-related peptides and their receptors, thereby creating, destroying, or changing 

circuits without altering anatomical connectivity. These types of gene expression changes 

could underlie rapid adaptations in behavior (Young, et al. 1997). Better tools for 

measuring receptor expression patterns and receptor signaling activities are required to 

address this question in closely related species that have differences in oxytocin-mediated 

behaviors. 

Oxytocin-related peptides have been studied extensively using pharmacological 

tools in invertebrates, but only in C. elegans has this study extended to genetics. Genetics 

has a remarkable ability to surprise, by uncovering biological functions that had never been 

suspected, as well as power to dissect known functions. In the past, however, it has not 

been an option for most invertebrate species. New genome editing technologies such as 

CRISPR should make it possible to generate both global and cell-type specific oxytocin-

deficient mutants in a wide array of non-model organisms. As a complement to the addition 

of exogenous peptide, it will be possible to disrupt the endogenous peptide or receptors and 

assay natural behavior in intact animals. Genome editing could also provide a way to 

deliver transgenic tools for optical sensors of neural activity such as GCaMP, as well as 

chemo- and opto- genetic molecular tools to precisely manipulate the cells and circuits 

used by oxytocin and other neuromodulators. 
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In this review we have focused primarily on behaviors performed by adult animals. 

There is much left to discover about the ontogeny of oxytocin-mediated behaviors. In 

addition to the studies in S. officinalis (Bardou, et al. 2010), oxytocin-related peptides and 

receptors are expressed in the larval stages of several invertebrates including C. elegans 

(Garrison et al., 2012) and T. castaneum (Stafflinger et al., 2008), sometimes at much 

higher levels than in adults. It would be interesting to investigate the developmental and/or 

physiological roles of oxytocin-like peptides during the maturation of these animals. 

Invertebrate models have much to offer our understanding of how oxytocin 

influences circuit function to generate behavior, and how behaviors rapidly evolve despite 

the strong genetic and functional conservation of oxytocin and its receptors. Future studies 

should take a comparative approach to integrate genes, cells, circuits, and behavior in 

diverse animals, to define what is fundamental and what is accidental in the relationship 

between oxytocin-related peptides and behavior. 
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CHAPTER II:  THE ETHOLOGY OF CAENORHABDITIS MATING 

Introduction 

 The nematode roundworm Caenorhabditis elegans provides an ideal model for 

deep, ethological inquiry into reproductive behavior. More than merely a composite of 

sensory inputs and responses, male mating behavior in C. elegans recapitulates all of the 

qualities described in ethologically relevant behavior.  Male mating is innate, not learned. 

The first attempt at mating is often the most successful.  Male mating is spontaneous, 

elicited by an internal drive, not merely by the presence of the stimuli.  Males participate 

in what ethologists describe as vacuum activity (Tinbergen, 1951), sexually scanning 

themselves or each other in the absence of mates.  Finally, male C. elegans reproductive 

behavior can be broken down into its components with supernatural stimuli.  In one study, 

paraformaldehyde-fixed hermaphrodites were sufficient to suppress male exploratory 

behavior (Barrios et al., 2008).   Taken together, this suggests that mating behavior is 

governed largely by what the ethologists described as innate releasers, which correspond 

in part to what scientists now know to be neuromodulators like non-canonical 

neurotransmitters (serotonin, dopamine, etc.) and neuropeptides (flps, nlps, neurophysins, 

etc.).  Indeed, neuromodulatory releasers have been implicated in the regulation of male 

mating behavior for 35 years, and continue to be in current research. 

 The classical ethologist Niko Tinbergen provided a philosophical framework for 

asking biological questions about behavior based on Aristotle’s four αιτια, or “causal 

explanations” (Aristotle, 1970; Tinbergen, 1951).  A summary of them and their 

organization as Tinbergen conceived of it are presented in Table 2.  According to 

Tinbergen, explanations can be broken down into two perspectives, the static and dynamic, 
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and two viewpoints, the proximate and the ultimate. These then interact with each other to 

provide four distinct forms of inquiry of explanation: mechanistic, 

developmental/ontological, functional/adaptive, and phylogenetic/evolutionary.  

 

Table 2: Table of Categories for Questions and Explanations. Based on the chart in 

Nikolaas Tinbergen’s Study of Instinct, this presents the 4 modalities of inquiry for the 

ethologist.   

  diachronic vs. synchronic perspective 
 
 
 
 
 

  
Static View: Explanation 
of the current form of 
species 
 

 
Dynamic view 
Explanation of current 
form in terms of a 
historical sequence 

 
 
 
 
 
How vs. 
Why 
Questions 

 
Proximate view 
How an individual 
organism's 
structures function 
 

 
Mechanism (causation) 
Mechanistic explanations 
for how an organism's 
structures work 

 
Ontogeny 
(development) 
Developmental 
explanations for 
changes 
in individuals, from 
DNA to their current 
form 
 

 
Ultimate 
(evolutionary) 
view 
Why a species 
evolved the 
structures 
(adaptations) it has 
 

 
Function (adaptation) 
A species trait that solves 
a reproductive or survival 
problem in 
the current environment 

 
Phylogeny 
(evolution) 
The history of the 
evolution of sequential 
changes in 
a species over many 
generations 
 

 
 The research literature on Caenorhabditis mating behavior already provides a 

framework for pursuing studies that touch all four of these modalities of inquiry.  In this 

chapter, I intend to highlight the work previously conducted within an ethological 

narrative, focusing specifically on chemical and neuromodulatory signaling in the male 

that governs this complex reproductive behavior.  I will begin by discussing the behavior, 
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then briefly touch on what is known about male physiology.  From there, I will take time 

to discuss the contributions that the chemical signals serotonin, acetylcholine, dopamine, 

and the neuropeptides make to male mating behavior.  Finally, I close with a brief 

discussion of the mating behavior of other species, including female behavior in closely 

related, purely sexual species.  

 

The behavior 

 The mating behavior of the male C. elegans can be broken down into distinct steps, 

or sub-behaviors (Liu and Sternberg, 1995).  These steps are referred to as sub-behaviors, 

and not behaviors, because they are not independent of one another, but rather they build 

upon one another:  one leads to the next.  They are also, however, not a rigidly fixed motor 

program.  The redundancy in sensory feedback at each step allows the male to respond to 

his dynamic environment with plasticity (Liu and Sternberg, 1995).  In their 1995 paper, 

Liu et al. describe the steps of male mating behavior that largely still frame experimental 

studies in mating behavior today.  

Contact 

 All male mating in C. elegans begins when the male’s tail, his sexual organ, makes 

contact with the hermaphrodite mate.  This can occur either dorsally or ventrally, and there 

are ray sensilla oriented in either direction for each scenario (Liu and Sternberg, 1995).  

Ventral facing rays are redundant with the hook, post-cloaca sensilla (p.c.s.), and spicules 

in initiating a sexual response to contact (Liu and Sternberg, 1995).  Response to contact 

is defined as the occurrence of three events: the halting of forward motion, the placement 

of the ventral side of the male tail against the body of the hermaphrodite, and the initiation 
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of backwards scanning (Liu and Sternberg, 1995).  I define this as a categorical behavioral 

trait, either happening or not, with no time component. 

Backing 

 Once contact has been made, male animals scan the body of the hermaphrodite 

through backward locomotion.  This is done at varying speeds, and for varying durations 

(Garrison et al., 2012; Liu and Sternberg, 1995), Thus, backing is a quantitative behavioral 

trait. Males in which the hook sensilla have been ablated protract their spicules and engage 

in a slower backing behavior, for example (Liu and Sternberg, 1995). For the purposes of 

my study, I combine backing and turning under the category of vulva search.   

Turning 

 When the male approaches the head or tail of the hermaphrodite, he must execute 

a turning motion requiring the coordination of his entire body.  The turn can be broken into 

two components: the sharp ventral arch, and the proper timing of that arch behavior (Liu 

and Sternberg, 1995).  Turning can be broken into its components genetically and through 

neuronal manipulation (Liu and Sternberg, 1995; Liu et al., 2007).  Males with rays 7-9 

ablated are unable to regulate turning timing, and swim off the end of the hermaphrodite 

(Liu and Sternberg, 1995). Dopamine-deficient animals, affecting rays 5, 7, and 9, have 

defects in executing the “arch,” and make sloppy, wide turns (Liu and Sternberg, 1995).   
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Figure 2.1: A step-by-step schemata for male C. elegans mating. Hermaphrodite is 

depicted in brown, male is depicted in gray, and sperm is depicted in white. Sub-behaviors 

are labeled below the illustrations that represent them. Arrows represent transitions 

between the sub-behaviors.  The sub-behavior Leave is represented in red.  

 
Prodding 

 In the wild-type, un-manipulated male C. elegans, vulva location and spicule 

insertion are inseparable, and so are given the collective name prodding (Garrison et al., 

2012).  Prodding begins with the cessation of backward motion at the location of the 

hermaphrodite’s vulva, followed by thrusting as the male attempts to insert its spicules.  

This tends to be the most difficult step of mating behavior for wild-type males to 

accomplish, and the step at which males fail if they are unable to mate in the 5 minutes 

provided by the assay.   

Slipping 

 Liu, et al. conceived of slipping behavior as part of vulva location/spicule insertion, 

but Garrison et al. reported it as its own, “non-productive” behavior in a 2012 Science 

article.  Slipping is defined as the repetitive back and forth rubbing of the male with his tail 
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along the body of the hermaphrodite.  This occurs sometimes along a part of the body 

directly proximate to the vulva, but also can occur along the body at other locations. It 

differs from backing because it is not a scanning, backward only locomotion.  The male 

often will arch his body away from the mate when slipping, as opposed to keeping it close 

and straight as he does in backing.  While I am uncomfortable making judgments about the 

productivity or unproductivity of mating sub-behaviors, I believe slipping is of a different 

character than vulva search or prodding, and that it is a deviation from the canonical motor 

program of mating behavior, perhaps a process that allows the male to respond to changing 

environmental cues.   

Sperm transfer 

 Once the spicules are inserted, the anal sphincter contracts, allowing the cloaca to 

open and sperm to travel from the seminal vesicle to the vas deferens and into the 

hermaphrodite’s uterus (Liu and Sternberg, 1995).  Males transfer between 30 and 180 

sperm in each ejaculation, and each transfer takes on average 4 seconds (Liu and Sternberg, 

1995).  Despite occurring quickly, males leave their spicules inserted into the 

hermaphrodite for an average of 27 seconds (Liu and Sternberg, 1995).  This is thought to 

be a vestigial feature of a common nematode mating behavior that has been lost in the 

Bristol strain of C. elegans’: the deposition of a copulatory plug on the mated 

hermaphrodite.  

Leaving 

 Leaving occurs when the male animal aborts mating prior to sperm transfer by 

disengaging contact with the hermaphrodite and swimming away.  This was first described 
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as a sub-behavior in the Garrison et al.  Like contact, leaving is not a quantitative sub-

behavior, but rather a categorically scored sub-behavior.  

 

Anatomy and physiology of male mating 

Non-tail, male specific anatomy and physiology 

 Compared to the adult hermaphrodite nervous system, with 302 neurons, 8 of which 

are sex-specific (2 HSN and 6 VC neurons), the adult male nervous system has 383 

neurons, 89 of which are sex-specific (Sulston et al., 1980).  All but 22 of these neurons 

are located in the male tail, the sexual organ of the animal. Among the neurons that are not 

in the tail  are the four CEM neurons, which are cholinergic, ciliated sensory neurons in 

the head that project dendrites into the male’s nose (Knobel et al., 2008; Pereira et al., 

2015). These neurons are responsible for the male’s response to hermaphrodite-derived 

hormone via the TRPP2-like channel pkd-2/lov-1 (Bae and Barr, 2008). The other 18 non-

tail, male specific neurons are the nine CPs, of which CP1-CP6 are serotonergic (Serrano-

Saiz et al., 2017b), and the nine cholinergic CA neurons, that run along the ventral chord 

of the male (Pereira et al., 2015).  CA1- CA4 may also be serotonergic (Serrano-Saiz et al., 

2017b). The CP7 and CP8 neurons also express the neuropeptide pigment dispersing factor 

(pdf-1), and all CPs express nematocin (ntc-1) (Barrios et al., 2012; Garrison et al., 2012).  

CP neurons have been implicated in the coordination of turning behavior (Loer, 1993).   

The male tail 

 The male tail has a distinctive, fan-like anatomy that surrounds a cloaca from which 

protract the spicules, two needle-like tubes that are inserted into the hermaphrodite’s vulva 

during copulation.  The “fan” is made up of nine bilateral sensilla called the rays.  Each ray 
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is innervated by two neurons: an A and a B neuron (Sulston et al., 1980).  Rays 1, 5, and 7 

have exposed ciliated 

 

Figure 2.2: Anatomy of the C. elegans male tail.  Ventral side up of the posterior portion 

of an adult male under DIC microscopy.  Ray sensilla are labeled 1 through 9.  Ventral 

facing, dorsal facing, and lateral facing rays are also indicated.  Hook sensilla and cloaca 

are indicated with arrows, as is the approximate location of the retracted spicules inside the 

male’s body. Photo adapted from (Nguyen et al., 1999).   

 
endings that open dorsally and respond to dorsal contact (Liu and Sternberg, 1995). Rays  

2, 4, and 8 open ventrally, and assist in ventral contact (Liu and Sternberg, 1995).  Rays 3 

and 9 open laterally, and Ray 6 does not have exposed ciliated endings (Liu and Sternberg, 

1995).  The “hook,” located just anterior to the cloaca is also innervated by two sensory 

neurons, HOA and HOB, with two support cells (Sulston et al., 1980). Anatomy suggests 

that the HOA neuron, which terminates its ciliated, dendritic ending before reaching the 

hook opening, is mechanosensory, while HOB, which has a ciliated ending exposed 

externally through a socket in the hook, may be chemosensory (Barr and Garcia, 2006). 
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The post-cloaca sensilla (p.c.s) is innervated by three neurons: PCA, PCB, and PCC, and 

three support cells. It is responsible for communicating vulva location (Sulston et al., 

1980). The spicule functions with SPC, a proprioceptive neuron associated with the spicule 

protractor muscles (Sulston et al., 1980). SPC works with SPV to successfully drive 

insertion of the male’s spicules into the hermaphrodite’s vulva (Liu and Sternberg, 1995).  

SPC also heavily innervates the male gonad,  along with PCB and PCC, and likely plays a 

role signaling sperm transfer under the conditions of vulva contact and spicule protraction 

(Barr and Garcia, 2006).   

61 of the male sex specific neurons are found in the male’s tail (Sulston et al., 1980), 

but its sexual dimorphism runs deeper, both at the level of connectivity (Garcia and 

Portman, 2016) and in neurotransmitter/neuromodulator synthesis (Serrano-Saiz et al., 

2017b).  Neurons common between hermaphrodites and males show different connectivity 

in the different sexes (Garcia and Portman, 2016), as well as different neurotransmitter and 

neuromodulator expression (Serrano-Saiz et al., 2017b).  For example, the embryonic M 

cell lineage is the progenitor for both the egg laying muscles and the spicule protractor 

muscles (White et al., 1986).  Each of these muscles is innervated by cholinergic neurons 

(VC neurons in the hermaphrodite, PCC and SPC in the male). In addition, the 

hermaphrodite uses the neurotransmitter serotonin from the sex-specific neuron HSN to 

control the frequency and timing of egg-laying, while the male uses glutaminergic neurons, 

such as PCA, to control the frequency and timing of spicule protraction (Garcia and 

Portman, 2016).   

Sometimes a neuron takes on an additional role in one sex compared to the other. 

The neuron DVA is used for locomotive control in both sexes, but also plays a large 
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neuromodulatory role in male mating by releasing nematocin (Garrison et al., 2012; Hums 

et al., 2016; Oranth et al., 2018).  

Yet another example of sexually dipmorphic circuitry can be found in the varying 

responses of the two sexes to the same pheromone. Wild-type hermaphrodites are repulsed 

by the ascaroside C9, sensed by the neuron ADL, while males are attracted to it.  Jang, et 

al.’s model suggests that sexual dimorphism in ADL’s response to C9 balances the 

antagonistic circuit with RMG and ASK, thereby decreasing avoidance and promoting 

attraction (Jang et al., 2012).   

 

Figure 2.3 Expression of neuromodulators in male sensory neurons. Left, schemata of 

the C. elegans male tail with labeled sensory neurons.  Dendritic projections are in light 

gray. Right color legend for neuromodulator identity.  Neuron color represents the presence 

of the corresponding neuromodulator.  Neurons with two or more neuromodulators are 

striped with corresponding color.  While acetylcholine is a classical neurotransmitter 

(signaling to excitatory and inhibitory channels, not G-coupled protein receptors), I include 

it in this diagram for two reasons. One, it is the most broadly expressed neurotransmitter 

in the male nervous system.  Secondly, it has an antagonistic role with dopamine, so 

knowing its sites of expression is important to understanding the many ways in which 

dopamine neuromodulates male mating.  
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 Figure 2.3 shows neuromodulator expression in sensory neurons of the male tail.  

Many of these neurons also express the classical neurotransmitters glutamate and GABA, 

but those is not depicted (Serrano-Saiz et al., 2017b).  The two main points to take away 

from this figure are 1.) there is a tremendous amount of neuromodulatory signaling in the 

male tail; and 2.) many of the neurons release more than one modulator, and therefore 

likely participate in different circuits involved in carrying out male reproductive behavior.  

A few neurons shared between hermaphrodites and males also show sexually dimorphic 

neurotransmitter expression.  AIM in the animal’s head is glutaminergic in hermaphrodites, 

and cholinergic in males (Serrano-Saiz et al., 2017b).  PHC, a sensory neuron in 

hermaphrodites and a hub neuron in males, scales its glutamate levels in a sexually 

dimorphic manner (Serrano-Saiz et al., 2017a), and the sex-shared neuron AVG 

dimorphically scales its acetylcholine levels (Serrano-Saiz et al., 2017b).  Finally, PVN, 

upon maturation in males, begins to express glutamate in addition to the cotransmitter 

acetylcholine (Serrano-Saiz et al., 2017b). These neurotransmitter expression patterns 

provide an inviting starting point to investigate the mechanistic, functional, developmental, 

and evolutionary features of C. elegans reproductive behavior.  

 In the next section, I will briefly discuss what is known about the male reproductive 

behaviors governed by these neuromodulatory circuits.  

 

Serotonin in mate search and tail curling  

 The connection between serotonin and the modulation of mating behavior is 

seductive, especially in light of the well-established fact that loss of libido is a common 

side effect to SSRI antidepressants (Montejo et al., 2001).  A loss-of-function mutation in 
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the serotonin reuptake transporter of C. elegans, mod-5, abolishes mate search behavior 

(Emmons and Lipton, 2003), and tph-1 mutant males, deficient in serotonin, leave patches 

of food where mates are present less than wild-type males (Lipton et al., 2004), suggesting 

that excess serotonin decreases the drive for males to mate, while lower levels increases it. 

Serotonin is also known to play a role in the turning behavior of male mating.  Loer and 

Kenyon discovered that the addition of serotonin causes male C. elegans and not 

hermaphrodites to curl their tails ventrally (Loer, 1993).  Ablation of the male-specific, 

serotinergic CP neurons led to males making sloppy turns during mating and the inability 

to make the tight, ventral turns seen in wild-type male behavior (Loer, 1993).  Thus, 

serotonin regulates reproductive behavior of male C. elegans at least two levels: the level 

of motivation in mate search, and in full body coordination when conducting the complex 

locomotive task of executing a turning during vulva search.   

 

Dopamine and acetylcholine in copulation and intromission 

 Acetylcholine is the most broadly used neurotransmitter in the male C. elegans 

sexually dimorphic circuitry (Pereira et al., 2015).  Male-specific neurons can be divided 

into 24 classes, and of those, 16 are cholinergic (Pereira et al., 2015), including the CEMs, 

the CAs, and many of the tail sensory-motor neurons that synapse directly onto muscles 

(Liu et al., 2011; Pereira et al., 2015).  

Dopamine antagonizes the cholinergic mating circuits of male vulva location, 

spicule protraction, intromission, and sexual satiation/recovery (Correa et al., 2012; Correa 

et al., 2015; LeBoeuf et al., 2014).  Dopamine-deficient males have precocious spicule 

protraction. The same phenotype can be recapitulated pharmacologically with an 
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acetylcholine agonist, and reversed by the exogenous application of dopamine (Correa et 

al., 2012).  Mutant males lacking D2-like dopamine receptors dop-2 and dop-3 were 

unaffected by the addition of dopamine (Correa et al., 2012). These inhibiting, dopamine 

receptors are expressed both in cholinergic neurons involved in copulation (such as PCB) 

and copulation musculature.   The dop-2;dop-3 double mutant displays less rhythmic 

mating behavior that results in more random, sustained prods of rapid, shallow thrusting 

(Correa et al., 2012). Dopaminergic ray neurons (R5A, R7A, and R9A) display calcium 

transients upon vulva location during mating, and R7A shows transients when cholinergic 

p.c.s. neurons PCB and PCC are stimulated (Correa et al., 2012). Dopamine also modulates 

communication between the cholinergic neurons of the p.c.s (PCB and PCC) and the 

glutaminergic neurons of the p.c.s. and hook sensilla (PCA and HOA) via a D2-like 

receptor (Correa et al., 2015).  Finally, dopamine release from the socket support cells of 

the spicule, not the neurons, promote ejaculation and extend refractory periods post-coitus, 

presumably by modulating the cholinergic spicule neurons SPV and SPD, which innervate 

the gonad (LeBoeuf et al., 2014).  Thus, at many levels of the mating circuit, dopamine 

antagonizes the sensory/motor cholinergic neurons to direct the movement and repetitions 

of mating behavior in a goal-oriented fashion.  

 

Neuropeptides in C. elegans mating 

 Neuropeptides regulate C. elegans mating behavior on the level of motivation/drive 

(Barrios et al., 2012), global organization (Garrison et al., 2012), execution of complex 

steps in mating (Liu et al., 2007), and behavior in response to the presence or absence of 

larvae (Scott et al., 2017). The FMRF-like neuropeptides flp-8, flp-10, flp-12, and flp-20 
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regulate wild-type turning during male mating (Liu et al., 2007).  By rescuing the 

ubiquitous neuropeptide processing enzyme egl-3 in specific neurons, Liu and researchers 

determined that the touch receptor neurons, shared by males and hermaphrodites, are the 

sources of these neuropeptides relevant to the turning phenotype.  flp-8 expression 

specifically in PVM rescued turning behavior, a neuron previously thought not to have a 

function (Liu et al., 2007).  This regulation is directly mediated by the touch neuron’s 

response to touch, and independent of serotonergic signaling (Liu et al., 2007).   

 With the neuropeptide pdf-1, Barrios et al. was able to: 1.) dissect appetitive and 

consummatory reproductive behavior of the C. elegans male; and 2.) demonstrate how a 

circuit and peptide common between the sexes can be coopted for two sexually dimorphic 

purposes (Barrios et al., 2012).  pdf-1 and pdfr-1 mutant males were defective in mate 

exploratory search behavior and responded less “avidly” to hermaphrodite contact 

(appetitive behaviors), but were able to mate with the competency of wild-type males 

(consummatory behavior) (Barrios et al., 2012). PDF-1 promotes sexual exploratory 

behavior in male C. elegans (Barrios et al., 2012), and foraging exploratory behavior in 

hermaphrodites (Flavell et al., 2013). Overexpression of PDF-1 in males led to a two-fold 

increase in male exploratory behavior dependent on the PDFR-1 receptor, whereas 

overexpression in hermaphrodites did not lead to increased exploratory behavior (Barrios 

et al., 2012).  Laser ablation and genetic rescue experiments indicate that the common 

interneuron AIM is the relevant source of PDF-1 for male exploratory behavior (Barrios et 

al., 2012).  Interestingly, AIM is the neuron that Pereira et al. report switching 

neurotransmitter expression, from glutamate to acetylcholine, between hermaphrodites and 

males (Pereira et al., 2015).   
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 The oxytocin homolog nematocin has been shown to regulate both appetitive and 

consummatory behaviors of male C. elegans mating, from hermaphrodite contact, to 

turning, to vulva prodding efficiency (Garrison et al., 2012).   Like, pdf-1, nematocin is 

released from the two neurons shared between males and hermaphrodites: AFD in the head 

and DVA in the tail (Garrison et al., 2012).  Unlike pdfr-1, however, nematocin’s receptors 

NTR-1 and NTR-2 express predominately in male-specific neurons, especially in the tail 

(Garrison et al., 2012).  Garrison, et al. demonstrate that DVA is the primary source of 

nematocin for male mating behavior by knocking the gene out in DVA specifically, and 

showing these males recapitulate the majority of the mating defects.  Thus, it would seem 

that DVA has been coopted for a new function in the male C. elegans mating circuitry.  It 

has also been suggested that nematocin is responsible for suppressing adult exploratory 

behavior in the presence of conspecific larva (Scott et al., 2017).   

 

The girls: mating ethology of other Caenorhabditis species 

 Up until this point, I have only discussed the mating behavior of male C. elegans.  

Furthermore, the majority of these experiments were performed on hermaphrodite mating 

partners with either genetically, pharmacologically, or physically compromised 

locomotion, to effectively observe and quantitatively score the male behavior.  But males 

are only half of the story in Caenorhabditis mating ethology.  In this section, I turn my 

attention to what is known about hermaphrodite and female mating behavior.  

 Looking at the Caenorhabditis elegans species alone, one might conclude that 

hermaphrodites do not have any mating behavior at all.  Young adult hermaphrodite C. 

elegans actively “buck” and run away from a male attempting to mate (Garcia et al., 2007).   
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They also “pinch” off their vulva to avoid spicule insertion (Garcia et al., 2007).  This 

avoidance dissipates as the hermaphrodite ages, however, and hermaphrodites that have 

been adults for 72 hours move less and are much more effectively inseminated than their 

24 hour counterparts (Garcia et al., 2007).  fog-2 mutants, lacking hermaphroditic sperm, 

showed less escape behavior than their wild-type counterparts, but were not permissive to 

spicule insertion, suggesting that the behavior of the 72 hour adults is a combination of age 

and sperm depletion (Garcia et al., 2007).  

Garcia et al. examined mating in three Caenorhabditis species closely related to C. 

elegans: C. briggsae (hermaphroditic with males), C. remanei (pure sexual), and C. 

brenneri (pure sexual).    Neither the 24 nor the 72 hour C. briggsae hermaphrodites mated 

efficiently, but females in both 

 

Figure 2.4: Phylogeny of the Caenorhabditis clade. Hermaphrodite-male species are 

indicated in red, male-female species are indicated in blue.  Species discussed in this 

section are indicated in bold.   
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sexual species mated almost instantaneously due to an induced quiescence in the female 

partner (Garcia et al., 2007).   C. briggsae males could induce the quiescence in the C. 

remanei female, but male C. elegans could not, perhaps because C. briggsae are more 

closely related to C. remanei (Figure 2.4; Garcia et al., 2007).  Ablating the vulva precursor 

cells in C. remanei females destroyed the quiescent behavior (Garcia et al., 2007).  Ablating 

the p.c.s. neurons in males partially reduced female quiescence, but when p.c.s. neurons 

were ablated in combination SPC in males, female escape behavior resembled that of the 

hermaphroditic species (Garcia et al., 2007).  Interestingly, ablating the gonad of the male, 

as well as the Linker Cell, which connects the gonad to the spicule via the vas deferens in 

male development, also destroyed female quiescence, suggesting the male signal has its 

source in the gonad (Garcia et al., 2007).   

 The females of sexual Caenorhabditis species also exhibit an additional, social 

sexual behavior.  When a mating pair initiates mating, females will swarm to the pair to 

form a mating ball around the male (Markert and Garcia, 2013).  The cue is given through 

a volatile pheromone also delivered through the male’s gonad when he comes in contact 

with a mate (Markert and Garcia, 2013).  Ablating the gonad of the male destroys the 

attractive behavior (Markert and Garcia, 2013).  Recently inseminated females lose the 

ability to be attracted to the mating couple, but regain it as time passes, suggesting that 

females also have something analogous to a “refractory period” (Markert and Garcia, 

2013).  The pheromone cue is species dependent.  A C. brenneri mating couple cannot 

elicit the attraction of C. remanei females, nor can a C. brenneri male mating with a C. 

remanei female attract other C. remanei females (Markert and Garcia, 2013).  The behavior 

is not seen in either C. briggsae or C. elegans hermaphroditic species.  
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Summation 

 The richness of behavior, current knowledge, and experimental tools available for 

Caenorhabditis mating behavior makes it an ideal model to pursue behavioral neuroscience 

in the ethological tradition.  Foundations in neural connectivity (Jarrell et al., 2012), 

neurotransmitter expression (Serrano-Saiz et al., 2017b) and a well-characterized, 

replicable behavior (Liu and Sternberg, 1995) have elucidated mechanistic (Correa et al., 

2015; Liu et al., 2011), functional (Barrios et al., 2012; Liu et al., 2007), ontological (Lints 

et al., 2004; Serrano-Saiz et al., 2017b), and evolutionary (Garcia et al., 2007; Markert and 

Garcia, 2013) insights into the nature of this complex and essential activity that nematodes 

must perform robustly, precisely, carefully, and flexibly all at the same time.  With the 

advent of emerging molecular (Xu, 2015), imaging (Hudson, 2018), circuit manipulation 

(Husson et al., 2013), and computational (Anderson and Perona, 2014) tools and 

methodologies, I believe the field can expect to enjoy an even more synthetic picture of 

reproductive behavior and other behaviors of its kind.   
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CHAPTER III: PHARMACOGENETIC SILENCING OF DVA DURING MATING 

Rationale for the experimental approach  

 An important feature to establish when studying the relationship between 

neuromodulators and behavior is the appropriate time scale in which the neuromodulator 

acts.  Neuromodulators such as biogenic amines, neuropeptides, and steroids can act over 

seconds, minutes, or hours to exert their effects.  In addition, a modulator can act at one 

time in development to affect circuit function and behavior at a much later time. The 

nematode C. elegans has a single, oxytocin-related peptide, nematocin, which has been 

implicated in male mating efficiency (Garrison, et al., 2012). Males lacking nematocin 

show quantitatively poor performance in a time-restricted, five-minute mating assay.  The 

essential source of nematocin in the male is a single neuron DVA (Garrison, et al. 2012). 

However, nematocin function has only been studied in knockout mutants that lack 

nematocin function for the lifetime of the male, and DVA function only after laser ablation 

early in life (Garrison, et al. 2012).  

 Two techniques offer acute and reversible neuronal silencing: optogenetics and 

pharmaco-genetics.  Although optogenetics allows for much finer temporal resolution 

(Yizhar et al., 2011), C. elegans has a natural sensitivity to light (Liu et al., 2010), that 

could compromise its mating behavior. For this reason, I chose a pharmacogenetic 

approach to acutely silence DVA.  

 To silence DVA, I used the heterologous, histamine-gated chloride channel (HisCl) 

as described in Pokala et al. (2014).  Males expressing HisCl can be placed in the presence 

of histamine just prior to mating, allowing them to develop without perturbation.  In the 

presence of histamine, HisCl hyperpolarizes the neuron(s) in which it is expressed, thereby 
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silencing them.  This process is reversible, and neurons will return to normal activity levels 

after an incubation period off histamine.  Finally, histamine levels are titratable, allowing 

for the possibility of more refined follow up studies on DVA neuronal dynamics (Pokala 

et al., 2014). 

 

DVA activity is required for efficient mating 

HisCl (Figure 3.1) was expressed under the DVA-selective nlp-12 promoter 

fragment previously described (Garrison et al., 2012) and expression was confirmed with 

mCherry tagged with the 2A peptide (Ahier and Jarriault, 2014).  Epifluorescence and DIC 

microscopy confirmed expression in DVA (Figure 3.1) in both males and hermaphrodites.  

 
 

Figure 3.1 Diagram and expression of the histamine-gated chloride channel. Left: 

Pentameric schemata of the chloride channel in a lipid bilayer with the molecular structure 

of its ligand, histamine. Right: Overlay of epiflorescence and DIC microscopy images of 

an L4 male tail to show expression of HisCl under the nlp-12 reporter fragment with an 

mCherry reporter. The DVA cell body and axon are labeled.  

 
 Mating of virgin males with nontransgenic unc-64 hermaphrodites was videotaped 

for five minutes in the following conditions: males with no transgene and off histamine 
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(wild-type control); males with the HisCl transgene and off histamine; males with no 

transgene and on 10 mM histamine; and males with the HisCl transgene and on 10 mM 

histamine. Transgene-free males off histamine were controls for day-to-day variation in 

mating conditions. These controls were required to mate with at least 60% success rate 

(3/5) in order to keep the data from the day.  Males with the HisCl transgene alone and in 

the presence of histamine alone were also tested to measure contributing effects of these 

reagents, if any.  The experimental males with the HisCl transgene were incubated in the 

presence of histamine two hours prior to mating in order to silence DVA.  A sample set of 

20 was determined to the effective sample size to detect significant defects by a power 

calculation (see EXPERIMENTAL PROCEDURES for details). Mating results are shown 

below (Figure 3.2). 

Wild-type and transgene positive animals in the absence of histamine mated at the 

same rate (Figure 3.2). In each, 17 out of 20 animals, or 85%, mated within five minutes. 

Wild-type animals exposed to histamine prior to the mating assay mated at a slightly lower 

rate that was not significantly different from the controls: 14 out of 20 or 70% mated within 

five minutes (Figure 3.2). This may suggest some effect of histamine itself on male mating.  

In animals both possessing the HisCl transgene and incubated in the presence of histamine, 

mating was significantly compromised (Figure 3.2).  Only 8 out of 20 animals successfully 

mated in five minutes, or 40%.  The Fisher’s Exact Test with a False Discovery Rate 

multiple comparison correction yielded a p value of 0.016, statistically significant 

according to the ≤0.05 standard.  This mating efficiency is comparable to that of males 

with ntc-1 knocked out specifically in DVA (Garrison et al., 2012).   
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Figure 3.2: Mating efficiency of animals with pharmacogenetically silenced DVA. x-

axis: the conditions and genotypes tested. DVA::HisCl indicates the presence of an 

integrated HisCl transgene expressed in DVA.  “- histamine” indicates the absence of 

histamine, “+ histamine” the presence of 10 mM histamine. y-axis: the fraction of males 

that mated for each genotype/condition.  Raw fractions are indicated above each bar. First 

bar (light gray) are the wild-type control animals. Bars 2-4 (dark gray) have the transgene 

(#2), histamine (#3) and both (#4). Last bar (medium gray) represents DVA-silenced males 

that did not mate in the first trial (4th bar) and were subsequently incubated off histamine 

for 2 hours before retesting (last bar). p-values for statistical significance were calculated 

with a Fisher’s Exact Test with a False Discovery Rate multiple comparison correction.  

 

 The 12 animals that did not successfully mate in the presence of histamine were 

then moved to a histamine free incubation plate and allowed to recover for two hours.  They 

were then retested for mating efficiency (Figure 3.2).  11 out of 12, or 92% of the animals 

mated during the second, histamine-free attempt. The result also yields a statistically 

significant p-value of 0.016 with the Fisher’s Exact Test and a False Discovery Rate to 
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correct for multiple comparisons. This internally controlled experiment, combined with the 

externally controlled experiment of comparing two different sets of animals, indicate that 

DVA activity is necessary during mating.  

 

The ethomics of male mating behavior 

To examine the effects of DVA silencing on behavior in more detail, I tracked their 

behavior throughout the five-minute mating video, and constructed a model for dynamic 

mating behavior. I assigned each movie frame to the sub-behavior that the male was 

engaged in during that frame. Mating behavior was broken down into 6 sub-behaviors 

based on these categories (Garrison et al., 2012):  contact, vulva search, prodding, slipping, 

sperm transfer, and leaving. For descriptions of how these behaviors are defined, please 

see Chapter II: The behavior. Contact, sperm transfer, and leaving were deemed to be 

categorical sub-behaviors, meaning they either occurred or not, and time spent engaged in 

the given sub-behavior was not meaningful or relevant to the overall structure of mating 

behavior. Vulva search, prodding, and slipping were considered quantitative. Duration 

spent engaged in the sub-behavior was essential and meaningful to understanding the 

overall structure of mating behavior. Figure 3.3 depicts a version of the mating ethogram 

in Chapter II, where the sub-behaviors have been condensed to the ones used for this 

study.  It shows sub-behaviors, frequency of transitions between them (arrow weights), and 

schematic cartoons of the sub-behavior directly above them.  Colors for each sub-behavior 

will be kept consistent in ethograms throughout this thesis: blue for vulva search, green for 

prodding, and maroon for slipping. Figure 3.10, at the end of this chapter, presents the raw 

mating traces for the DVA silencing experiment in wild-type animals. 
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Figure 3.3: Condensed mating ethogram for wild-type male C. elegans.  Males are 

depicted in gray and hermaphrodites are depicted in brown. Sub-behaviors are labeled 

below the cartoons that schematize them.  Arrow weights depict transition frequencies as 

calculated in Garrison, et al.  

 

Markov modeling of mating behavior 

After tracking, the dynamics of mating behavior was modeled for all of the genotypes and 

conditions of the HisCl experiment tested.  A Markov model was selected for a first attempt 

at modeling mating behavior for its simplicity. Transition probabilities were calculated for 

the frequencies that males moved between sub-behaviors. I used this model to determine 

how likely a male engaged in a given mating sub-behavior is to transition to another within 

an assigned time vector. One second was chosen as the time step, given its physiological 

relevance to mating behavior, which occurs on a time frame of seconds to minutes (see 

EXPERIMENTAL PROCEDURES).  The means and standard deviations presented (full 

data in Table 5 at the end of the chapter) were calculated by bootstrapping the empirical 

data of 20 animals over 1000 iterations (see EXPERIMENTAL PROCEDURES for a 

thorough treatment of this calculation). Figure 3.8 presents the histograms of this 

bootstrapping. These bootstrapped distributions were then statistically compared to the 

experiment-to-experiment distribution of wild-type control data (see EXPERIMENTAL 
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PROCEDURES, Table 15). p values were calculated with an unpaired, two tailed student’s 

t test, and statistical significance was determined with a False Discovery Rate multiple 

comparison correction.  A summary of all statistically significant results are found in Table 

3.  Red font indicates a significant drop in transition probability compared to wild-type 

animals without histamine, and bold font indicates a significant rise in transition 

probability.  

Figure 3.4 illustrates the results of silencing DVA on male mating behavior with 

quantitative ethograms.  State durations for vulva search, prodding, and slipping were 

calculated as the percentage of mating behavior time spent engaged in the sub-behavior, 

represented as circle size (Figure 3.4) and associated numbers (white).  Circle colors 

correspond to the color key in Figure 3.4.  Arrow weights are representative of the 

transition probabilities between sub-behaviors, as calculated in the Markov model.  

 

Table 3: Summary of significant results from Table 5.  Mean transition probabilities for 

wild-type males(w.t.), males expressing the transgene (+t.g.), males on histamine with no 

transgene (+his), males both expressing transgene and on histamine (+both), and males 

after recovery (rec.) are shown.  Mean values significantly higher than wild-type controls 

are in bold. Mean values significantly lower than wild-type controls are in red.  Transition 

probabilities that present a pattern consistent with DVA silencing are indicated with an 

asterisk (*).  
transition probability w.t. + t.g. + his. + both rec. 
prod to vulva search* 0.20 0.40 0.13 1.02 0.96 
prod to sperm transfer* 0.69 1.12 0.78 0.39 1.22 
slip to vulva search* 1.70 2.73 1.23 1.12 2.18 
slip to prod* 17.29 16.52 12.47 9.73 12.36 
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Figure 3.4 DVA silencing changes the dynamics of mating behavior.  Numbers within 

a circle are the percentage of time in which the males engage in that sub-behavior when 

mating.  Arrow weights represent the probability in a given second that the male will 

transition between the behaviors. Curved arrows pointing back toward the circle indicate 

the probability per second that the male will persist in the sub-behavior.  Left column are 

ethograms of males without the DVA::HisCl transgene. Right column are males with the 

DVA::HisCl transgene.  Top row are males tested in the absence of histamine. Bottom row 

are males tested in the presence of histamine. Red values illustrate statistically significant 

decreases, while bold values indicate statistically significant increases. Only transitions 

that were significantly affected by histamine silencing are presented (full data in Table 5).   
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Silencing DVA directionally affects transitions out of prodding state, and all transitions 

out of the slipping state.  

 When visualizing the ethograms, one is struck by how subtle and iterative the 

changes in transition frequency are that culminate in a significantly reduced overall mating 

efficiency.  My statistical analysis of the DVA silencing experiment, however, reduced the 

problem from ten different transition probabilities to four transitions significantly 

perturbed by silencing DVA to an effect greater in size than the experiment-to-experiment 

variation in the control males.  While the transgene slightly raises the vulva search to prod 

transition probability, from 0.20+/- 0.01% to 0.40+/- 0.02%, vulva search to prod transition 

probability more than doubles upon addition histamine, to 1.02+/- 0.05%, and remains 

elevated even after two hours of recovery off histamine. Because this value remains 

elevated even while mating efficiency is restored to wild-type levels (Figure 3.2), it is 

unlikely to be central for mating.  prod to sperm transfer transition probabilities are less 

than half their value in the control data sets (Table 3, Figure 3.4), from 1.12+/- 0.02% to 

0.39+/- 0.01%.  slip to vulva search transition probabilities are elevated by the presence of 

the transgene alone, 2.73+/-0.05%, but drop with the addition of histamine, to 1.12+/- 

0.05%, and recover to their elevated levels post recovery, 2.18+/-0.06%. Finally, slip to 

prod transition frequencies are slightly lower with the addition of histamine alone, from 

17.29+/- 0.17% to 12.47+/-0.20%, still lower in the presence of both the transgene and 

histamine, 9.73+/-0.17%, and partially rebound after recovery off histamine to 12.36+/-

0.29%. Silencing DVA increases “backward” transitions out of prodding into vulva search, 

and decreases “forward” prodding transitions into sperm transfer.  Both forward and 
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backward transitions out of slipping, into vulva search and prodding are affected by DVA 

silencing.  

 

Acute silencing of DVA does not change mating efficiency in nematocin-deficient 

animals 

 The experiments to this point have identified acute effects of DVA on mating.  

Nematocin, however, is not the only neuromodulator produced by DVA, which also 

expresses the neuropeptide NLP-12 (Hu et al., 2011) and the neurotransmitter acetylcholine 

(Pereira et al., 2015). Consequently, there may be mating behavioral effects from silencing 

DVA that are not mediated by nematocin.   

 To parse the DVA-silenced behavioral phenotypes that are mediated by nematocin 

release from those that are not, I pharmacogenetically silenced DVA in nematocin-

deficient males.  Behavioral phenotypes that were mediated by nematocin release would 

not be further enhanced by DVA silencing and vice versa, whereas independent effects of 

nematocin deficiency and DVA-silencing would result in enhanced defects when the two 

manipulations were combined, compared to both alone. The raw traces of these ethograms 

can be found at the end of the chapter in Figure 3.11.  

I first examined overall mating efficiency (Figure 3.5).  6/20 nematocin-deficient males 

mated successfully, or 30%, a fraction consistent with numbers previously reported 

(Garrison et al., 2012). Mating efficiency did not significantly change with the addition of 

the transgene or histamine alone (7/20 males, or 35% efficiency), nor did it change when 

DVA was effectively silenced in the males by the addition of both, 6/20 males or 30% 

efficiency.  Animals that did not mate in the first instance were once again allowed to 



54 
 

recover off histamine for two hours before being retested.  Those animals also had a similar 

mating efficiency of 4/14 or 29% efficiency.  Thus, overall mating efficiency changed very 

little when DVA was silenced in nematocin-deficient males.  

 

Figure 3.5 Mating efficiency of ntc-1 males is not affected by DVA silencing.  x-axis: 

the conditions/ genotypes tested. DVA::HisCl indicates the presence of an integrated HisCl 

transgene expressed in DVA.  “- histamine” indicates the absence of histamine, “+ 

histamine” the presence of histamine. y-axis: the fraction mated of each 

genotype/condition.  Raw fractions are indicated above each bar graph. First bar (light 

gray) is the nematocin-deficient control males. Bars 2-4 (dark gray) have the transgene 

(#2), histamine (#3) or both (#4). Last bar (medium gray) represents DVA-silenced, 

nematocin deficient males that did not mate in the first trial (4th bar graph) and were 

subsequently incubated off histamine for two hours before retesting (last bar graph). p-

values for statistical significance were calculated with a Fisher Exact Test. Because there 

were no statistically significant results, no multiple comparison correction was performed. 
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DVA silencing in nematocin-deficient animals alters two of the four transition 

probabilities affected by DVA silencing in wild-type animals. 

I then analyzed the mating behavior dynamics of silencing DVA in nematocin-

deficient males with the Markov model (see EXPERIMENTAL PROCEDURES) in the 

same manner as before.  Transition probability means and standard deviations are reported 

in Table 6 at the end of the chapter, and the histograms from the data bootstrapping are 

presented in Figure 3.9. These distributions were then statistically compared to the 

experiment-to-experiment variability of nematocin-deficient males using a two-tailed, 

unpaired Student’s t test to identify changes with meaningfully large effect sizes (Table 

16). Table 4 summarizes the statistically significant findings. 

Table 4: Summary of statistically significant results from Table 5.  Mean transition 

probabilities for wild-type (w.t.), expressing the transgene (+t.g.), on histamine with no 

transgene (+his), both expressing transgene and on histamine (+both), and after recovery 

(rec.) are shown.  Mean values significantly higher than wild-type controls are in bold. 

Mean values significantly lower than wild-type controls are in red.  Transition probabilities 

that follow a pattern consistent with HisCl neuronal silencing are indicated with an asterisk 

(*).     
transition probability w.t. + t.g. + his. + both rec. 
vulva search to vulva search 93.36 94.96 94.44 93.51 91.14 
prod to vulva search* 0.73 0.77 0.74 2.37 1.19 
prod to prod 96.95 93.00 94.52 93.00 93.82 
prod to slip 2.04 6.00 4.46 4.31 3.81 
slip to vulva search* 0.59 0.63 0.62 2.26 1.43 
slip to prod 11.33 6.99 10.94 8.56 8.01 

 
  In this experiment, some of the statistically significant results followed a pattern 

consistent with DVA silencing, and some did not.  Vulva search to Vulva search, that is, 

the tendency for the males to persist in vulva search was only significantly lower after two 

hours recovery (Table 4), from 94.96+/- 0.08% to 91.14+/- 0.04% (Figure 3.6, Table 4).  
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prod to prod transition probabilities, the tendnecy to persist in prodding were lower with 

the addition of the transgene and the addition of histamine alone, but did not lower any 

further upon the additon of both (transgene alone: 93.00+/- 0.11% v.s. transgene and 

histamine: 93.00+/-0.13%, Figure 3.6, Table 4). A similar pattern is seen with slip to prod 

transitions, lowered by the transgene alone (6.99+/-0.11%, Figure 3.6, Table 6) and 

remaining lowered with the addition of both (8.56+/-0.35%, Figure 3.6, Table 4).  prod to 

slip transitions also showed a reciprical pattern, elevating with the addition of either the 

transgene or the histamine, but remaining elevated to comparable levels with the addition 

of both (6.00+/- 0.10% v.s. 4.31+/- 0.10%, Figure 3.6, Table 4).    

 Prod to vulva search and slip to vulva search both showed changes in transition 

probability consistent with DVA silencing.  Transition probabilities rose only upon the 

addition of both the transgene and the histamine, from 0.77+/-0.03% to 2.37+/-0.05% in 

the instance of prod to vulva search, and 0.53+/- 0.01% to 2.26+/- 0.09% (Figure 3.6, 

Table 4) in the instance of slip to vulva search.  Both these transition probabilities remained 

elevated even after 2 hours of recovery off histamine: 1.19+/-0.05% and 1.43+/-0.09%, 

respectively (Figure 3.6, Table 4). DVA silencing affected these two transition 

probabilities in a similar way when conducted in a wild-type genetic background (Figure 

3.4, Table 3). The result suggests that the effects of silencing DVA on these two transitions 

are independent of nematocin.  Further, because they do not return to their wild-type values 

after recovery, when wild-type mating effeciency recovery, the data strongly indicate that 

they are also independent of DVA’s acute effects on mating efficiency.   
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Figure 3.6 Mating dynamics of DVA-silenced, nematocin-deficient males Numbers 

within a circle are the percent time in which the males engage in that sub-behavior when 

mating.  Arrow weights represent the probability in a given second that the animal will 

transition between the behaviors.  Curved arrows pointing back toward the circle indicate 

the probability per second that the male will persist in the sub-behavior.  Left column are 

ethograms of males without the DVA::HisCl transgene. Right column are males with the 

DVA::HisCl transgene.  Top row are males tested in the absence of histamine. Bottom row 

are males tested in the presence of histamine.  Red values illustrate statistically significant 

decreases, while bold values indicate statistically significant increases.   

   

 

Silencing DVA does not affect locomotive of behavior hermaphrodites on food  

DVA is strongly implicated in governing normal body posture, proprioception (Li 

et al., 2006), and coordination between the anterior and posterior parts of the hermaphrodite 
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during locomotion.  Severe kinking and postural defects were reported in Garrison et al. 

when DVA was ablated from L1 males by laser (Garrison et al., 2012).  

How then do we know that the mating defects observed from pharmacogenetically 

silencing DVA are not the result of perturbing normal locomotion? I characterized the 

effects of DVA silencing on locomotion in hermaphrodites (Figure 3.7).  Two hour movies 

were made of 20 adult hermaphrodites on and off food.  Using code developed in the lab 

(Pokala et al., 2014), I characterized locomotive behavior with respect to forward speed, 

angular speed, body posture eccentricity, reversal frequency, reversal length, reversal type, 

and other parameters.  No changes in locomotion were detectable other than a change in 

forward speed off food. Wild-type hermaphrodites showed an increase in forward 

locomotion over time off food both in the presence and absence of histamine (Figure 3.7: 

column 2). Hermaphrodites expressing the DVA::HisCl transgene alone showed the same 

(Figure 3.7: column 4, top) but slowed locomotion when DVA was silenced (Figure 3.7: 

column 4, bottom) compared to intact animals off food. Tracking software was not able to 

robustly segment the males, so this experiment could not be conducted on male locomotion. 

Because I conduct the mating assays on food, locomotion changes off food are unlikely to 

adversely affect the locomotion of the mating animals that I assay. However, locomotion 

tracking and analysis of males is necessary to confirm this result.    

 

Discussion 

Only in C. elegans are there experimental tools available to study the action of 

oxytocin neurons in real time.  Difficult to access, oxytocin-releasing neurons in mammals 

are located in the peri-ventricular and supra-optic nuclei of the hypothalamus, deep within  
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Figure 3.7 DVA silencing affects hermaphrodite locomotion speed off food. 

Cumulative distributions of forward velocity of hermaphrodites of the following 

genotypes/conditions: left (white) wild-type hermaphrodites, right (gray) hermaphrodites 

expressing the DVA::HisCl transgene;  top row, hermaphrodites off histamine; bottom row, 

hermaphrodites on histamine;  first, third columns, hermaphrodites on food; second, fourth 

columns, hermaphrodites off food.  DVA-silenced hermaphrodites do not increase their 

speed over time when off food (2nd row, fourth column) unlike their wild-type counterparts 

(2nd row, 2nd column).   

 

the brain (Sofroniew, 1983).  Constitutive genetic knockouts of the mammalian oxytocin 

(OXT) and its receptor OXTR yield different phenotypes, likely due to cross-activation of 

its homolog arginine-vasopressin (AVP) (Ragnauth et al., 2004). Constitutive AVP 

knockouts are embryonically lethal, due to it its role in fluid homeostasis of the circulatory 

system (Young and Gainer, 2003). Many common invertebrate models, such as Drosophila 

melanogaster, have lost the oxytocin gene over the course of evolution (Stafflinger et al., 

2008). C. elegans males, on the other hand, have only one oxytocin-related peptide. 
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Animals lacking nematocin show a quantitative phenotype of poorer performance in a five-

minute mating assay (Garrison et al., 2012).  Its main source for this circuit in the male tail 

is a single neuron, DVA, with a well-established, cell-specific promoter fragment (Hu et 

al., 2011).  All of these features can be exploited in an inquiry into the mechanism of acute 

nematocin action during mating. 

 

 My results suggest that nematocin is acutely released from DVA to mediate the 

mating behavior of male C. elegans. Neuropeptides have been shown to have acute effects 

on behavior, on the order of minutes to several hours, as observed for the Agouti-related 

peptide’s (AgRP) role in appetite stimulation (Aponte et al., 2011) or the peptide ATRP’s 

central role in regulating the ingestion cycle of Aplysia (Jing et al., 2010).   Other 

neuropeptides have been shown to trigger effects over much longer timescales, from 

several hours to days to even years, affecting the developmental trajectory of the animal, 

such as the eclosion hormone (EH) or the ecdysis-triggering hormone (ETH) in Drosophila 

(Zitnan et al., 1996).   

 To decipher whether nematocin was acutely required from DVA with mating, or 

whether it played a developmental role in the male mating circuit before sexual maturation, 

I needed to be able to silence DVA just prior to mating and observe the behavior effects.  

Because genetic knockouts lack the peptide for their entire lifespan, genetic studies alone 

are not sufficient to tackle such a question alone.  Neither are neural ablations, genetically 

(by caspase expression) (Chelur and Chalfie, 2007) or physically (by laser microsurgery) 

(Bargmann and Avery, 1995), because they also prohibit neural function over most or all 

of the animal’s lifespan.  Pharmacogenetic silencing of DVA afforded me a number of 

advantages over previous methods. By using the heterologous histamine-gated chloride 
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channel, I was able to distinguish acute effects of nematocin release from longer occurring 

effects by allowing the animals to mature unperturbed, manipulating the neuron only in the 

adult hours prior to mating. This generated a measureable mating defect that could then be 

restored by restoring neuronal activity to DVA in a two-hour incubation off histamine. In 

a way that I did not anticipate, this acute silencing may have also circumvented the 

locomotive defects observed in other neuronal manipulations (Figure 3.7), such as laser 

ablation (Garrison, et al. 2012), allowing me to parse the authentic mating phenotypes from 

the general locomotion and body posture phenotypes.   

 The assay allowed me to look at the phenomena with both an endpoint analysis 

(Figures 3.2 and 3.5) and a dynamic mating model (Figures 3.4 and 3.6).  From the end 

point analysis, I was able to establish that mating efficiency was compromised by silencing 

DVA (Figure 3.2) in a way comparable to genetically knocking out the gene for nematocin 

(Figure 3.5).  By modeling mating dynamics with behavioral ethograms, I was able to 

identify a set of transition probabilities between the mating sub-behavioral states that 

changed significantly and meaningfully when DVA was silenced (Figure 3.4).   

 By performing the same ethomic analysis on DVA silenced, nematocin-deficient 

males, I identified two transition probabilities that changed (Figure 3.6) even though all of 

the experimental sets had equivalent mating efficiencies.  Interestingly, these were also the 

transition probabilities that did not return to wild-type levels upon recovery, suggesting 

that they are peripheral to the behavior of interest to me.  

Thus, I have identified 2 transition probabilities mediated by the acute release of 

nematocin from DVA during mating: prod to sperm transfer and slip to prod. One is a 

progressive transition out of prodding, and one is a progressive transition into prodding.  
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Interestingly, slip to prod seems to be mediated by nematocin release from DVA, but prod 

to slip does not. These observations will inform our experimental interpretation going 

forward as I genetically probe the mechanism for acute nematocin release from DVA 

during mating.   

Because DVA has functions outside of mating, such as locomotion, proprioception, 

and posture, it is possible that silencing DVA could adversely affect mating behavior 

indirectly and not directly.  I performed a control experiment to characterize changes in 

locomotion resulting from acute DVA silencing. Due to the limitations of my tracking 

code, this unfortunately had to be performed in hermaphrodites and not males.  Regardless, 

the only locomotive phenotype observed was a defect in forward locomotion speed off 

food (Figure 3.7). Because my mating assays are conducted on food, I am not concerned 

about this defect. Nematocin-deficient males have been previously characterized as having 

normal locomotive behavior (Garrison et al., 2012).   Silencing DVA in nematocin-

deficient animals did not have any measurable additive effects on mating efficiency. If the 

DVA-silenced phenotype observed in wild-type animals was due solely to compromising 

the locomotion of the animals, one would expect to see an additive effect in mating 

efficiency in the nematocin-deficient experiment.  Additionally, there was no visibly 

perceptive postural defect in DVA-silenced males, wild-type or nematocin deficient, 

whereas the DVA ablated animals had visible “kinks” in their body.  Taken together, this 

evidence suggests that I need be minimally concerned with the locomotive effects of acute 

DVA silencing, if any, on my results.  
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Table 5: Means and standard deviations for all transition probabilities in DVA 

silencing experiment. p values were determined by an unpaired, two-tailed Student’s t test 

with the mean and s.d. from wild-type controls calculated in Table 15 (See 

EXPERIMENTAL PROCEDURES).  Statistical significance was determined by the p value 

and a False Discovery Rate multiple comparison correction. 

index genotype condition transition mean s.d. p val sig? 
1 wt -his searchtosearch 95.07 0.10 0.0321  
2 wt -his searchtoprod 3.00 0.05 2.082  
3 wt -his searchtoslip 1.73 0.06 0.3470  
4 wt -his prodtosearch 0.20 0.01 0.0042 ** 
5 wt -his prodtoprod 95.07 0.05 0.0215  
6 wt -his prodtoslip 4.04 0.04 0.2041  
7 wt -his prodtosperm 0.69 0.01 0.0489  
8 wt -his sliptosearch 1.70 0.05 0.0240  
9 wt -his sliptoprod 17.29 0.17 0.0302  
10 wt -his sliptoslip 81.01 0.18 0.0152  
11 wt +his searchtosearch 93.68 0.14 0.3300  
12 wt +his searchtoprod 4.69 0.13 0.5425  
13 wt +his searchtoslip 0.62 0.02 0.3548  
14 wt +his prodtosearch 0.13 0.01 0.0570  
15 wt +his prodtoprod 93.49 0.08 0.7783  
16 wt +his prodtoslip 5.60 0.08 0.6893  
17 wt +his prodtosperm 0.78 0.01 0.1606  
18 wt +his sliptosearch 1.23 0.03 0.2763  
19 wt +his sliptoprod 12.47 0.20 0.0086 ** 
20 wt +his sliptoslip 86.30 0.22 0.7540  
21 DVA::HisCl -his searchtosearch 91.29 0.22 0.1433  
22 DVA::HisCl -his searchtoprod 5.32 0.07 0.7086  
23 DVA::HisCl -his searchtoslip 0.74 0.05 0.4649  
24 DVA::HisCl -his prodtosearch 0.40 0.02 <0.0001 *** 
25 DVA::HisCl -his prodtoprod 93.85 0.10 0.4083  
26 DVA::HisCl -his prodtoslip 4.62 0.06 0.4964  
27 DVA::HisCl -his prodtosperm 1.12 0.02 0.2023  
28 DVA::HisCl -his sliptosearch 2.73 0.05 0.002 ** 
29 DVA::HisCl -his sliptoprod 16.52 0.30 0.1395  
30 DVA::HisCl -his sliptoslip 80.74 0.33 0.0281  
31 DVA::HisCl +his searchtosearch 94.03 0.06 0.1905  
32 DVA::HisCl +his searchtoprod 4.99 0.04 0.8846  
33 DVA::HisCl +his searchtoslip 0.98 0.05 0.7433  
34 DVA::HisCl +his prodtosearch 1.02 0.05 <0.0001 *** 
35 DVA::HisCl +his prodtoprod 93.07 0.12 0.7085  
36 DVA::HisCl +his prodtoslip 5.53 0.14 0.7474  
37 DVA::HisCl +his prodtosperm 0.39 0.01 0.0012 ** 
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38 DVA::HisCl +his sliptosearch 1.12 0.05 0.4529  
39 DVA::HisCl +his sliptoprod 9.73 0.17 <0.0001 *** 
40 DVA::HisCl +his sliptoslip 88.48 0.19 0.1711  
41 DVA::HisCl recovery searchtosearch 93.71 0.07 0.3147  
42 DVA::HisCl recovery searchtoprod 3.30 0.07 0.0199  
43 DVA::HisCl recovery searchtoslip 2.99 0.10 0.0119  
44 DVA::HisCl recovery prodtosearch 0.96 0.05 <0.0001 *** 
45 DVA::HisCl recovery prodtoprod 94.72 0.14 0.0526  
46 DVA::HisCl recovery prodtoslip 2.87 0.06 0.0258  
47 DVA::HisCl recovery prodtosperm 1.22 0.03 0.0571  
48 DVA::HisCl recovery sliptosearch 2.18 0.06 0.0022 ** 
49 DVA::HisCl recovery sliptoprod 12.36 0.29 0.0073 ** 
50 DVA::HisCl recovery sliptoslip 84.84 0.23 0.6544  
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Figure 3.8: Bootstrap data distributions for all sub-behaviors of the wild-type, DVA 

silencing experiment.  
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Table 6: Mean and standard deviation for transition probabilities in nematocin-

deficient, DVA-silencing experiment. p values were determined by an unpaired, two-

tailed Student’s t test with the mean and s.d. from nematocin-deficient controls calculated 

in Table 16 (See EXPERIMENTAL PROCEDURES).  Statistical significance was 

determined by the p value and a False Discovery Rate multiple comparison correction.   

index genotype condition transition mean s.d. p val sig? 
1 ntc-1 -his searchtosearch 93.36 0.23 0.9344  
2 ntc-1 -his searchtoprod 4.07 0.06 0.5676  
3 ntc-1 -his searchtoslip 1.29 0.05 0.4124  
4 ntc-1 -his prodtosearch 0.73 0.01 0.3312  
5 ntc-1 -his prodtoprod 96.95 0.04 0.1288  
6 ntc-1 -his prodtoslip 2.04 0.03 0.1722  
7 ntc-1 -his prodtosperm 0.27 0.05 0.2645  
8 ntc-1 -his sliptosearch 0.59 0.02 0.3825  
9 ntc-1 -his sliptoprod 11.33 0.25 0.0954  
10 ntc-1 -his sliptoslip 87.99 0.27 0.0476  
11 ntc-1 +his searchtosearch 94.44 0.10 0.2262  
12 ntc-1 +his searchtoprod 4.92 0.08 0.0741  
13 ntc-1 +his searchtoslip 0.64 0.02 0.1576  
14 ntc-1 +his prodtosearch 0.74 0.02 0.2870  
15 ntc-1 +his prodtoprod 94.52 0.16 0.0040 ** 
16 ntc-1 +his prodtoslip 4.46 0.14 0.0086 ** 
17 ntc-1 +his prodtosperm 0.28 0.01 0.2891  
18 ntc-1 +his sliptosearch 0.62 0.03 0.5557  
19 ntc-1 +his sliptoprod 10.94 0.18 0.2267  
20 ntc-1 +his sliptoslip 88.45 0.2 0.2004  
21 ntc-

1;DVA::HisCl 
-his searchtosearch 94.96 0.08 0.0289  

22 ntc-
1;DVA::HisCl 

-his searchtoprod 3.74 0.09 1.000  

23 ntc-
1;DVA::HisCl 

-his searchtoslip 1.31 0.02 0.3737  

24 ntc-
1;DVA::HisCl 

-his prodtosearch 0.77 0.03 0.1827  

25 ntc-
1;DVA::HisCl 

-his prodtoprod 93.00 0.11 <0.0001 *** 

26 ntc-
1;DVA::HisCl 

-his prodtoslip 6.00 0.10 0.0003 *** 

27 ntc-
1;DVA::HisCl 

-his prodtosperm 0.23 0.01 0.0933  

28 ntc-
1;DVA::HisCl 

-his sliptosearch 0.63 0.01 0.6180  



67 
 

 
 

29 ntc-
1;DVA::HisCl 

-his sliptoprod 6.99 0.11 0.0005 *** 

30 ntc-
1;DVA::HisCl 

-his sliptoslip 92.22 0.11 0.0002 *** 

31 ntc-
1;DVA::HisCl 

+his searchtosearch 93.51 0.08 0.1989  

32 ntc-
1;DVA::HisCl 

+his searchtoprod 3.91 0.05 0.7659  

33 ntc-
1;DVA::HisCl 

+his searchtoslip 1.56 0.03 0.1033  

34 ntc-
1;DVA::HisCl 

+his prodtosearch 2.37 0.06 <0.0001 *** 

35 ntc-
1;DVA::HisCl 

+his prodtoprod 93.00 0.13 <0.0001 *** 

36 ntc-
1;DVA::HisCl 

+his prodtoslip 4.31 0.10 0.0124 * 

37 ntc-
1;DVA::HisCl 

+his prodtosperm 0.31 0.01 0.5311  

38 ntc-
1;DVA::HisCl 

+his sliptosearch 2.26 0.09 <0.0001 *** 

39 ntc-
1;DVA::HisCl 

+his sliptoprod 8.56 0.35 0.0145 * 

40 ntc-
1;DVA::HisCl 

+his sliptoslip 89.08 0.43 0.9500  

41 ntc-
1;DVA::HisCl 

recovery searchtosearch 91.14 0.04 <0.0001 *** 

42 ntc-
1;DVA::HisCl 

recovery searchtoprod 3.88 0.05 0.8061  

43 ntc-
1;DVA::HisCl 

recovery searchtoslip 1.16 0.03 0.7142  

44 ntc-
1;DVA::HisCl 

recovery prodtosearch 1.19 0.05 0.0009 *** 

45 ntc-
1;DVA::HisCl 

recovery prodtoprod 93.82 0.28 0.0009 *** 

46 ntc-
1;DVA::HisCl 

recovery prodtoslip 3.81 0.14 0.0535  

47 ntc-
1;DVA::HisCl 

recovery prodtosperm 0.53 0.05 0.0325  

48 ntc-
1;DVA::HisCl 

recovery sliptosearch 1.43 0.09 0.0004 *** 

49 ntc-
1;DVA::HisCl 

recovery sliptoprod 8.01 0.24 0.0037 ** 

50 ntc-
1;DVA::HisCl 

recovery sliptoslip 88.53 0.19 0.2578  
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Figure 3.9: Bootstrap data distributions for all sub-behaviors of the nematocin-

deficient, DVA silencing experiment.  
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Figure 3.10: Raw mating traces from silencing DVA in wild-type males. Top, colorized 

mating schema indicating the color code for the behavioral traces. Bottom, raw mating 

traces for wild-type and transgenic positive males in both the presence and absence of 

histamine.  Right, males that did not mate from the DVA-silenced test group retested after 

a two hour incubation off histamine.  Each mating trace is five minutes. White space 

indicates the conclusion of mating after sperm has been transferred.   
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Figure 3.11: Raw mating traces from silencing DVA in nematocin-deficient males. 

Top, colorized mating schema indicating the color code for the behavioral traces. Bottom, 

raw mating traces for nematocin-deficient and transgene positive, nematocin-deficient  

males in both the presence and absence of histamine.  Right, males that did not mate from 

the DVA-silenced test group retested after a two hour incubation off histamine.  Each 

mating trace is five minutes. White space indicates the conclusion of mating after sperm 

has been transferred.   
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CHAPTER IV: DOPAMINE REGULATION OF OXYTOCIN DURING MATING 
 
A genetic candidate screen to parse the circuitry of nematocin action   

To begin investigating the mechanism for nematocin action, I made a list of genetic 

candidates that targeted the function of neurons upstream to DVA in the male wiring 

diagram (Jarrell et al., 2012, Figure 4.1, Table 7). I included genetic candidates to disrupt 

DVA sensory function, as DVA has been proposed to be a propriception neuron (Li et al., 

2006) and thereby may auto-trigger nematocin release.  lov-1 animals are incapable of 

mating (Shawn Xu and Barr, 2007), and mec-4 animals mate less efficiently due to their 

inability to complete turns during vulva scanning (Liu and Sternberg, 1995). I probed the 

function of nlp-12, trp-4, and cat-2 in wild-type and nematocin-deficient genetic 

backgrounds, looking for genetic interaction with ntc-1. In doing so, I found all three 

canonical forms of genetic evidence: additive, overlapping, and epistasis.  Here, I discuss  

        

Figure 4.1 and Table 7: Genetic candidate screen to manipulate the sensory inputs of 

DVA.  Left: Wiring diagram for neurons upstream of DVA in male C. elegans. Sensory 

neurons are represented with triangles, and interneurons with hexagrams. Solid arrows 

represent synapses, bars represent gap junctions, and dotted arrows represent potential 

extra-synaptic communication. Arrow weights are representative of the number of 

connections between the neurons of each type. Neurons are labelled with the genetic 

candidates that they express.  Right: A table of the genetic candidates, their associated 

neurons, and a description of their function.   
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the additive and overlapping evidence (nlp-12 and trp-4, respectively) briefly by describing 

only endpoint mating efficiency results.  The bulk of the chapter will be spent addressing 

nematocin’s genetic epistasis with dopamine (cat-2), experimentally and computationally, 

and its implications. 

  

Nematocin’s copeptide NLP-12: additive effects 

 Because nematocin and the neuropeptide NLP-12 are both released from DVA, I 

hypothesized that acute co-release during mating may contribute to coherent mating 

behavior.  To test this, I looked at the mating behavior of males with a loss-of-function 

mutation in nlp-12, comparing it to wild-type and nematocin-deficient animals tested in 

tandem, as well as the nematocin-NLP-12 double mutant. 8/20 nematocin-deficient males 

mated (40% efficiency, Figure 4.), and 11/20 NLP-12-deficient males mated (55% 

efficiency, Figure 4.2).  4/20 of the double mutant males mated, or 20% efficiency, 

approximately 50% of the nematocin- deficient males (Figure 4.2).  Although not 

significantly different from the mating efficiency of nematocin-deficient males, the mating 

efficiency of the double mutant males appears to be the additive combination of the single 

mutants alone.  Additionally, double mutants mate successfully at a rate lower than acutely 

silencing DVA just prior to mating (20% vs. 35%). Raw traces of the full ethomic tracking 

can be found at the end of the chapter in Figure 4.13. These results suggest that the effects 

of the NLP-12 and nematocin on mating are independent and additive, despite release from 

an overlapping neuron.   
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Figure 4.2: Additive genetic effect of nematocin and copeptide NLP-12. Light gray: 

wild-type control males. Dark gray, mutant test males. Y-axis: fraction of males mated in 

five-minute assay.  Actual fraction mated is labelled above its respective bar.  p values 

were calculated with a Fisher Exact Test and a False Discovery Rate to correct for multiple 

comparisons. 

 

Genetic overlap of nematocin and TRP-4 suggests related functions 

I next investigated the relationship between nematocin and TRP-4, a TRP-N 

channel expressed in DVA that could be a mechanism for DVA proprioception (Li et al., 

2006). Mating for single and double mutants was analyzed in a mating efficiency endpoint 

assay as described above. Nematocin-deficient and TRP-4-deficient males mated at 

comparable efficiencies: 8/20 or 40% and 7/20 or 35%, respectively (Figure 4.3). 8/20 

double mutants mated, also at an efficiency 40% (Figure 4.3).  Thus, the two genes had no 

additive effect on the phenotype.  Raw traces of the full ethomic tracking can be found at 
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the end of the chapter in Figure 4.14. This result suggests that TRP-4 and nematocin 

overlap in their functions in the mating circuit. 

 
Figure 4.3: Overlapping genetic phenotype of nematocin and channel TRP-4. Light 

gray: wild-type control males. Dark gray, mutant test males. Y-axis: fraction of males 

mated in five-minute assay.  Actual fraction mated is labelled above its respective bar.  P 

values were calculated with a Fisher Exact Test and a False Discovery Rate to correct for 

multiple comparisons. 

 

Classical epistasis between nematocin and dopamine  

 A major synaptic input into the nematocin-producing DVA neuron is the 

dopaminergic neuron PDE, both in male and  hermaphrodite C. elegans (Han et al., 2017, 

Figure 4.1).  Dopamine has been strongly implicated in the regulation of male mating 

behavior: in addition to PDE,  the male-specific rays R5A, R7A, and R9A are also 

dopaminergic (Barr and Garcia, 2006). Consequently, I next investigated the genetic 

interaction between nematocin and dopamine.       
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 6/20 ntc-1 males mated (30%, Figure 4.4), compared to control males that mated 

at 16/20 or 80% efficiency (Figure 4.4).  2/20 cat-2 males mated, (10% efficiency) 

consistent with previous reports (Figure 4.4, 3rd bar graph) (Liu and Sternberg, 1995).  

When the mutations were combined, 12/20 males mated, restoring mating efficiency to 

60% (Figure 4.4,), and resembling the nematocin-deficient mutant. Raw traces of the full 

ethomic tracking can be found at the end of the chapter in Figure 4.15. These results 

demonstrate classical genetic epistasis in which the nematocin mutant is epistatic to the 

dopamine mutant.  To verify the authenticity of the result, I rescued the nematocin peptide 

with a transgene under its native promoter (see EXPERIMENTAL PROCEDURES). 3/20 

transgenically rescued males mated--a rate of 15%--recapitulating the severe mating defect 

of the dopamine-deficient animals (Figure 4.4).    

Dopamine-deficient males exhibited additional mating defects compared to those 

of nematocin-deficient males.  Notably, dopamine-deficient males often abandoned their 

mates or aborted mating attempts prior to consummation.  In both wild-type and 

nematocin-deficient animals, aborted mating occured at a rate of 1/20 males, or 5% (Figure 

4.5, 1st and 2nd bar graphs).  Dopamine-deficient males aborted mating attempts at a rate 

of 9/20 males, or 45% (Figure 4.5). Aborted mating attempts were restored to wild-type 

or nematocin-deficient rates, 2/20 or 10%, in the nematocin and dopamine defective mutant 

(Figure 4.5). Confirming the result, transgenic rescue of nematocin in the double mutant 

resulted in an increase in aborted mating attempts, akin to the rate of males deficient in 

dopamine alone (9/20 males, Figure 4.5). Thus, the more severe mating defect in 

dopamine-deficient males is due at least in part to the action of nematocin.   
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Figure 4.4: Nematocin and dopamine mutants show a classical epistasis. Light gray: 

wild-type control males. Dark gray, mutant test males. Y-axis: fraction of males mated in 

five-minute assay.  Actual fraction mated is labelled above its respective bar.  p values 

were calculated with a Fisher Exact Test and a False Discovery Rate to correct for multiple 

comparisons. 

 

Dynamic behavioral modeling of nematocin-deficient and dopamine-deficient males 

To explore further how dopamine’s effect differed from nematocin’s in kind or in degree, 

and to elucidate the interaction between the two modulators, I returned to the quantitative 

description of mating behavior described in Chapter III (see also EXPERIMENTAL 

PROCEDURES).  I modeled the mating behavior of wild-type, nematocin-deficient, 

dopamine-deficient, double-deficient, and males with the nematocin transgenically rescue 

via the Markov method previously described (see EXPERIMENTAL PROCEDUES).   
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Figure 4.5: Genetic evidence for increased aborted mating attempts in dopamine-

deficient animals.  Light gray: wild-type control males. Dark gray, mutant test males. Y-

axis: Number of males that abandoned their mates during the five-minute assay.  Actual 

fraction is labelled above its respective bar.  P values were calculated with a Fisher Exact 

Test and a False Discovery Rate to determine statistical significance.   

 

Means and standard deviations from this analysis can be found at the end of this chapter in 

Table 10, and the histograms of the bootstrapped data can be found in Figure 4.11.  In the 

same manner as before, I then identified meaningful changes in probability that fulfilled 

the criteria of being both statistically significant from the control sets conducted along with 

the experiment, and having an effect size larger than that of the experiment-to-experiment 

variability of the wild-type controls.  A summary of the significant results from Table 10 
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can be found in Table 8.  Figure 4.6 illustrates the results of the modeling with graphical 

mating ethograms. 

Table 8: Summary of significant results from Table 10. Mean transition probabilities 

for wild-type (w.t.), nematocin-deficient (ntc-1), dopamine-deficient (cat-2), the double 

mutant (cat-2;ntc-1), and the transgenic rescue of nematocin (rescue) males are shown. 

Mean values significantly higher than wild-type controls are in bold. Mean values 

significantly lower than wild-type controls are in red.  Transition probabilities that follow 

a pattern consistent with epistasis are indicated with an asterisk (*).  p values and statistical 

significance were determined by statistically comparing the distributions with the mean 

and standard deviations of Table 15 (see Table 10).  

 
transition probability w.t. ntc-1 cat-2 cat-2;ntc-1 rescue 
prod to vulva search 0.00 0.79 0.05 0.00 0.82 
prod to prod* 91.89 96.01 93.65 96.67 92.51 
prod to sperm transfer* 1 0.26 0.09 0.58 0.30 
slip to prod* 13.88 9.52 12.65 9.28 2.19 
slip to slip 85.46 89.59 87.57 88.07 97.08 

 
 

Five transition probabilities out of ten showed statistically significant changes, and 

three of these demonstrated a pattern consistent with genetic epistasis.  Of the two that did 

not, prod to vulva search was slightly but significantly elevated in the nematocin-deficient 

males and in the transgenic rescue (0.79+/-0.04% and 0.82+/-0.03%, respectively, Figure 

4.6, Table 8), but not in the dopamine-deficient or double mutant males (0.05+/-0.01% and 

0.00+/-0.00%, respectively, Figure 4.6, Table 8).  Males where nematocin was 

transgenically rescued also tended to persist in slipping more than any of the genotypes 

(97.08+/-0.07%, compared to wild-type’s transition probability of 85.46+/-0.14%, Figure 

4.6, Table 8).  prod to sperm transfer, prod to slip, and persistence in prodding all had 

changes transition probability consistent with epistasis.  prod to sperm transfer transition 

probabilities fell from 1.00+/-0.01% to 0.26+/-0.01% in nematocin-deficient males, and to  
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Figure 4.6: Mating dynamics of nematocin and dopamine mutant males. Numbers 

within a circle are the percent time in which the males engage in that sub-behavior when 

mating.  Arrow weights represent the probability in a given second that the animal will 

transition between the behaviors.  Curved arrows pointing back toward the circle indicate 

the probability per second that the male will persist in the sub-behavior. Genotypes are 

labeled above the ethograms. statistically significant decreases in transition probability are 

labeled in red. Statistically significant increases in transition probability are labeled in 

bold.   

 
0.09+/-0.01% in dopamine-deficient males.  In the double mutant, this transition 

probability rose to 0.58+/-0.01%, and once again lowered in value when nematocin was 

rescued transgenically in the double mutant (0.30+/-0.01%, Figure 4.6, Table 8).  

Persistence in prodding raised in nematocin-deficient animals by a significant amount, 

91.89+/-0.13 % to 96.67+/-0.03 %, but not in dopamine-deficient males, 93.65+/-0.28% 
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(Figure 4.6, Table 8).  Double mutants had an elevated transition probability (96.67+/- 

0.03) more similar to the nematocin-deficient males, which was restored to a wild-type 

equivalent level in double mutant males in which nematocin was transgenically rescued 

(92.51+/-0.17, Figure 4.6, Table 8).   

 Changes observed in the slip to prod transition frequency are more puzzling.  In 

nematocin-deficient animals, I see slip to prod transition frequencies fall from 13.88+/-

0.14% to 9.52+/-0.10% (Figure 4.6, Table 8).  In dopamine-deficient animals, they fall 

only slightly, but significantly, to 12.65+/-0.30% (Figure 4.6, Table 8).  Males defective 

in both dopamine and nematocin have a slip to prod transition frequency similar to 

nematocin-deficient males, 9.28+/-0.18% (Figure 4.6, Table 8).  This probability is 

dramatically lower in double mutants in which nematocin is transgenically rescued, to 

2.19+/-0.04% (Figure 4.6, Table 8).  Whether this value is anomalously low, or whether 

the dopamine-deficient slip to prod transition probability is anomalously high, will become 

clearer with further experimentation.  

 

Silencing DVA in dopamine deficient males rescues their mating defects 

The classical interpretation of epistasis between dopamine and nematocin would 

indicate that dopamine is an upstream regulator of nematocin: that the severe mating defect 

in dopamine deficient animals is due to an excess of nematocin at the wrong time or place.  

To test the veracity of this hypothesis, I interrogated it with an orthogonal approach, by 

manipulating the release of nematocin with a circuit manipulation.  To accomplish this, I 

returned to the pharmacogenetic manipulation of DVA with the histamine-gated ion 
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channel HisCl (Pokala et al., 2014).  By silencing DVA just prior to mating, I hypothesized 

that I would be able to partially restore mating in dopamine-deficient animals. 

Figure 4.7 depicts the mating endpoint results from this experiment. Raw traces of 

the full ethomic tracking can be found at the end of the chapter in Figure 4.16. Adding 

either the DVA::HisCl transgene (Figure 4.7) or histamine (Figure 4.7) alone did not 

change the overall mating efficiency of the dopamine-deficient animals, which mated at a 

rate of 2/20 males, or 10%, for all three conditions.  When the reagents were combined to  

silence DVA, however, male mating efficiency was partially restored to a rate of 11/20, or 

55% (Figure 4.7).  Males that did not mate in this attempt were allowed to recover for two 

hours off histamine, just as before, and then were retested.  5/9 of these males successfully 

mated in the allotted five minutes, yielding a mating efficiency of 55% (Figure 4.7). Thus, 

the rescued mating defect persisted even after two hours of recovery off histamine.   

I then investigated whether behaviors implicated in the dopamine and nematocin 

interactions were also affected by DVA silencing in dopamine-deficient males.  First, I 

examined aborted mating attempts (Figure 4.8).  Neither the transgene nor histamine alone 

appeared to significantly alter this phenotype (Figure 4.8). Aborted mating attempts 

fluctuated from 7/20 for dopamine-deficient animals, to 9/20 for dopamine-deficient 

animals with only the transgene, to 10/20 for the dopamine-deficient animals paired with 

histamine alone (35-50%). Silencing DVA in dopamine deficient animals restored aborted 

mating attempts to wild-type levels, 2/20 males or roughly 10% (Figure 4.8).  Like mating 

efficiency, aborted mating attempts did not return to dopamine-deficient levels after two 

hours of histamine-free recovery.  
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Figure 4.7: Mating efficiency of DVA-silenced, dopamine-deficient males. x-axis: the 

conditions/ genotypes tested. DVA::HisCl indicates the presence of an integrated HisCl 

transgene expressed in DVA.  “- histamine” indicates the absence of histamine, “+ 

histamine” the presence of histamine. y-axis: the fraction mated of each genotype and 

condition.  Raw fractions are indicated above each bar . First bar (light gray) are the 

nematocin-deficient control males. Bars 2-4 (dark gray) have the transgene (#2), histamine 

(#3) or both (#4). Last bar (medium gray) represents DVA-silenced, dopamine-deficient 

males that did not mate in the first trial (4th bar) and were subsequently incubated off 

histamine for two hours before retesting (last bar). p-values for statistical significance were 

calculated with a Fisher Exact Test and the False Discovery Rate to correct for multiple 

comparisons.   

 

With the same Markov strategy as before, I modeled the mating behavior of DVA-

silenced, dopamine-deficient animals (see EXPERIMENTAL PROCEDURES).  The 

mating traces were bootstrapped to generate means and standard deviations for each of the 

transition probabilities (Table 11, Figure 4.12).  In this experiment, the dopamine-

deficient males are the control condition, and consequently experimental transition 
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probabilities need to be compared to dopamine-deficient transition probabilities to assess 

significant differences.  Unlike wild-type and nematocin-deficient males, where I had four 

to five experimental sets to determine the experiment-to-experiment variability, I only have 

two experimental sets.  To supplement this, I also included the “transgene only” and 

“histamine only” dopamine-deficient data sets (Table 17).  I felt justified in doing so 

because, by definition, I am looking for effect sizes larger than the effect of either transgene 

alone.  The adjusted mean and standard deviations for the transition probabilities in Table 

17 were then statistically compared to the experimental means and standard deviations in 

Table 11 with an unpaired, two-tailed Student’s t test and a False Discovery Rate threshold 

to correct for multiple comparisons.  A summary of all significant results can be found in 

Table 9.        

Four of the ten transition probabilities changed significantly.  prod to vulva search 

rose from 0.10+/-0.00% in transgene only, dopamine-deficient males to 0.57+/-0.02%, as 

did slip to vulva search, from 0.97+/-0.01% to 1.26+/-0.03% (Figure 4.9, Table 9).  slip 

to vulva search transition probabilities recovered when males were incubated off 

histamine, while prod to vulva search did not.  Both of these transition probabilities 

increase in value when DVA is silenced in wild-type males and nematocin-deficient males. 

As in previous experiments, they appear to be independent of the mating phenotype in this 

case as well, and indicative of another function of DVA.   
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Figure 4.8: Aborted mating attempts of DVA-silenced, dopamine-deficient males. x-

axis: the conditions/ genotypes tested. DVA::HisCl indicates the presence of an integrated 

HisCl transgene expressed in DVA.  “- histamine” indicates the absence of histamine, “+ 

histamine” the presence of histamine. y-axis: the number of aborted mating attempts per 

20 mating attempts.  Raw fractions are indicated above each bar. First bar (light gray) 

represents the dopamine-deficient control males. Bar 2-4 (dark gray) have the transgene 

(#2), histamine (#3) and both (#4). Last bar (medium gray) represents DVA-silenced, 

dopamine-deficient males that did not mate in the first trial (4th bar ) and were subsequently 

incubated off histamine for 2 hours before retesting (last bar). p-values for statistical 

significance were calculated with a Fisher Exact Test and a False Discovery Rate to correct 

for multiple comparisons.   
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Table 9: Summary of significant results from Table 11. Mean transition probabilities 

for dopamine-deficient (cat-2), transgene only (+t.g.) histamine only (+his), DVA-

silenced (+both), and males allowed to recover off histamine (rec.) are shown. Mean values 

significantly higher than dopamine-deficient controls are in bold. Mean values 

significantly lower than dopamine-deficient controls are in red.  Transition probabilities 

that follow a pattern consistent with DVA-silencing are indicated with an asterisk (*).   

 
transition probability cat-2 + t.g. + his. + both rec. 

prod to vulva search* 0.00 0.10 0.08 0.57 1.01 
prod to prod* 93.85 97.09 95.73 92.14 91.44 
prod to sperm transfer* 0.13 0.20 0.15 0.51 0.57 
slip to vulva search*  0.49 0.97 0.42 1.26 0.33 

 

Persistence in prodding (prod to prod) and prod to sperm transfer also changed 

significantly when DVA was silenced in dopamine-deficient males.  Transgene only, 

dopamine-deficient males persisted in prodding 97.09+/-0.19% of the time, whereas DVA-

silenced, dopamine-deficient males did so 92.14+/-0.24% of the time (Figure 4.9, Table 

9).  prod to sperm transfer increased by silencing DVA, from 0.20+/-0.01% (transgene 

only males) to 0.51+/-0.01% (Figure 4.9, Table 9). These transition probabilities also 

changed in the DVA-silencing experiments performed in wild-type and nematocin-

deficient males.  Notably, here they change in the opposite direction of previous 

experiments.  This is consistent with the experimental design.  I am rescuing function in 

this instance, while I was disrupting function previously. 

Slip to prod transitions did not change significantly as a result of DVA silencing in 

dopamine-deficient males.  Transition probabilities rose from 4.23+/-0.19% (transgene 

only males, Table 11) to 9.31+/-0.13% (DVA-silenced males, Table 11).  Due to the large 

experiment-to-experiment fluctuations in this transition probability among dopamine-
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deficient males, this change did pass the Student’s t test for statistical significance.  Both 

conditions, DVA-silenced or not, had compromised, decreased slip to prod transition 

probabilities.   

Figure 4.9: Mating dynamics of DVA-silenced, dopamine deficient animals. Numbers 

within a circle are the percent time in which the males engage in that sub-behavior when 

mating.  Arrow weights represent the probability in a given second that the animal will 

transition between the behaviors.  Curved arrows pointing back toward the circle indicate 

the probability per second that the animal will persist in the sub-behavior.  Left column 

are ethograms of males without the DVA::HisCl transgene. Right column are males with 

the DVA::HisCl transgene.  Top row are animals tested in the absence of histamine. 

Bottom row are animals tested in the presence of histamine.   
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A model for dopaminergic regulation of nematocin action 

 I began this chapter by exploring possible regulation of nematocin action in DVA 

by examining genes that targeted specific neurons.  The overlapping genetic interaction 

between nematocin and trp-4 led me to the dopaminergic neurons, which also express TRP-

4.  I found that nematocin mutants are epistatic to dopamine mutants, and confirmed the 

result with a transgenic rescue of nematocin. Ethomic investigation and modeling of the 

single and double mutants directed me to changes in transition probabilities common in 

both the nematocin-deficient males and the mating defects mediated by nematocin release 

from DVA (Chapter III), namely prod to sperm transfer, slip to prod, and persistence in 

prodding.  Dopamine-deficient animals also exhibited additional mating defects, such as 

an increased rate in aborting mating attempts, that were also epistatic with nematocin 

deficiency. By silencing DVA in dopamine-deficient animals, I was able to recapitulate the 

epistasis result with an orthogonal, circuit manipulation.  Here I saw increases in the prod 

to vulva search and slip to vulva search transition probabilities, as I have in every DVA 

silencing experiment regardless of genetic background.  I also saw changes in prod to 

sperm transfer and persistence of the prodding state.  These changes had the opposite sign 

of those observed by silencing DVA in wild-type males.  This makes sense because the 

former experiment rescues mating, while the latter perturbs it. Significant defect in the slip 

to prod transition probability was observed in dopamine-deficient males, but the small 

changes observed from DVA silencing were not statistically significant.   

Figure 4.10 diagrams the classical regulatory model for the genetic evidence that 

this chapter presents (Avery and Wasserman, 1992).  As stated before, genetic epistasis 

suggests that dopamine is an upstream regulator of nematocin, and that the severe mating 
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deficiency observed in dopamine is due to either an excess of nematocin or a lack of 

nematocin regulation (nematocin at the wrong time or times). This hypothesis was 

validated by the acute silencing of DVA in dopamine-deficient animals, which altered the 

transition probabilities implicated in nematocin’s action in DVA from prior experiments in 

order to rescue the mating defect.  In the next chapter, we will explore DVA’s activity at 

these critical transitions by characterizing the calcium dynamics of the neuron in freely 

moving males as they mate.     

 
 
Figure 4.10: Classical genetic epistasis model for dopamine and nematocin. Bars are 

indicative of a regulatory function.   
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Table 10: Means and standard deviations for all transition probabilities for the 

investigation of nematocin and dopamine’s genetic interaction. p values were 

determined by an unpaired, two-tailed Student’s t test with the mean and s.d. from wild-

type controls calculated in Table 15 (See EXPERIMENTAL PROCEDURES).  Statistical 

significance was determined by the p value and a False Discovery Rate multiple 

comparison correction. Statistically significant results are depicted in bold.  

index transition genotype mean s.d.  p val sig? 
1 searchtosearch wt 94.18 0.11 0.1491  
2 searchtoprod wt 5.47 0.11 0.5435  
3 searchtoslip wt 0.35 0.02 0.1806  
4 prodtosearch wt 0.00 0.00 0.3494  
5 prodtoprod wt 91.89 0.13 0.0512  
6 prodtoslip wt 7.15 0.13 0.0593  
7 prodtosperm wt 1.00 0.01 0.7399  
8 sliptosearch wt 0.54 0.02 0.2632  
9 sliptoprod wt 13.88 0.14 0.1306  
10 sliptoslip wt 85.46 0.14 0.9125  
11 searchtosearch ntc-1 93.92 0.03 0.2272  
12 searchtoprod ntc-1 5.12 0.04 0.9496  
13 searchtoslip ntc-1 0.33 0.01 0.1820  
14 prodtosearch ntc-1 0.79 0.04 <0.0001 *** 
15 prodtoprod ntc-1 96.01 0.13 0.0024 ** 
16 prodtoslip ntc-1 2.94 0.10 0.0294  
17 prodtosperm ntc-1 0.26 0.01 0.0003 *** 
18 sliptosearch ntc-1 0.89 0.02 1.000  
19 sliptoprod ntc-1 9.52 0.10 <0.0001 *** 
20 sliptoslip ntc-1 89.59 0.11 0.1033  
21 searchtosearch cat-2 92.09 0.10 0.4822  
22 searchtoprod cat-2 6.04 0.13 0.1574  
23 searchtoslip cat-2 0.86 0.03 0.5945  
24 prodtosearch cat-2 0.05 0.01 0.8112  
25 prodtoprod cat-2 93.65 0.28 0.6040  
26 prodtoslip cat-2 6.20 0.28 0.3053  
27 prodtosperm cat-2 0.09 0.01 <0.0001 *** 
28 sliptosearch cat-2 0.33 0.02 0.0903  
29 sliptoprod cat-2 12.65 0.30 0.0125 * 
30 sliptoslip cat-2 87.57 0.31 0.4034  
31 searchtosearch cat-2;ntc-1 95.25 0.16 .0237  
32 searchtoprod cat-2;ntc-1 4.04 0.14 0.1298  
33 searchtoslip cat-2;ntc-1 0.70 0.03 0.4250  
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34 prodtosearch cat-2;ntc-1 0.00 0.00 0.3494  
35 prodtoprod cat-2;ntc-1 96.67 0.03 0.0006 *** 
36 prodtoslip cat-2;ntc-1 2.76 0.03 0.0212  
37 prodtosperm cat-2;ntc-1 0.58 0.01 0.0114 * 
38 sliptosearch cat-2;ntc-1 1.34 0.04 0.1609  
39 sliptoprod cat-2;ntc-1 9.28 0.18 <0.0001 *** 
40 sliptoslip cat-2;ntc-1 88.07 0.17 0.2953  

41 
searchtosearch cat-2;ntc-1; ntc-1 

rescue 
90.21 0.19 

0.0223  

42 
searchtoprod cat-2;ntc-1; ntc-1 

rescue 
3.90 0.07 

0.0906  

43 
searchtoslip cat-2;ntc-1; ntc-1 

rescue 
0.44 0.08 

0.2288  

44 
prodtosearch cat-2;ntc-1; ntc-1 

rescue 
0.82 0.03 

<0.0001 *** 

45 
prodtoprod cat-2;ntc-1; ntc-1 

rescue 
92.51 0.17 

0.2342  

46 
prodtoslip cat-2;ntc-1; ntc-1 

rescue 
6.37 0.17 

0.2306  

47 
prodtosperm cat-2;ntc-1; ntc-1 

rescue 
0.30 0.01 

0.0005 *** 

48 
sliptosearch cat-2;ntc-1; ntc-1 

rescue 
0.23 0.01 

0.0532  

49 
sliptoprod cat-2;ntc-1; ntc-1 

rescue 
2.19 0.04 

<0.0001 *** 

50 
sliptoslip cat-2;ntc-1; ntc-1 

rescue 
97.08 0.07 

0.0007 *** 
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Figure 4.11:  Bootstrap data distributions for all sub-behaviors of the cat-2, ntc-1, and 

double mutant genetic screen.    
 
 
 
 
 
 
 
 
 



92 
 

Table 11: Means and standard deviations for DVA-silenced, dopamine-deficient 

animals and controls. p values were determined by an unpaired, two-tailed Student’s t 

test with the mean and s.d. from dopamine-deficient controls calculated in Table 17 (see 

EXPERIMENTAL PROCEDURES). Statistical significance was determined by the p 

value and a False Discovery Rate multiple comparison correction. Statistically significant  

results are depicted in bold.  

 
index genotype condition transition mean sd p val. sig? 

1 cat-2 -his searchtosearch 90.33 0.11 0.5357  
2 cat-2 -his searchtoprod 4.07 0.05 0.5903  
3 cat-2 -his searchtoslip 3.93 0.05 0.7848  
4 cat-2 -his prodtosearch 0.00 0.00 0.0240  
5 cat-2 -his prodtoprod 93.85 0.11 0.1851  
6 cat-2 -his prodtoslip 6.02 0.11 0.1800  
7 cat-2 -his prodtosperm 0.13 0.01 0.5504  
8 cat-2 -his sliptosearch 0.49 0.01 0.6936  
9 cat-2 -his sliptoprod 2.12 0.08 0.0970  
10 cat-2 -his sliptoslip 97.18 0.07 0.0555  
11 cat-2 +his searchtosearch 90.84 0.13 0.7292  
12 cat-2 +his searchtoprod 2.70 0.09 0.4934  
13 cat-2 +his searchtoslip 5.41 0.13 0.1233  
14 cat-2 +his prodtosearch 0.08 0.01 0.3694  
15 cat-2 +his prodtoprod 95.73 0.17 0.4604  
16 cat-2 +his prodtoslip 4.04 0.17 0.4588  
17 cat-2 +his prodtosperm 0.15 0.01 0.5504  
18 cat-2 +his sliptosearch 0.42 0.02 0.4055  
19 cat-2 +his sliptoprod 7.50 0.17 0.7179  
20 cat-2 +his sliptoslip 91.56 0.16 0.6756  
21 cat-2; 

DVA::HisCl 
-his searchtosearch 92.62 0.07 0.5321  

22 cat-2; 
DVA::HisCl 

-his searchtoprod 1.07 0.05 0.0633  

23 cat-2; 
DVA::HisCl 

-his searchtoslip 4.40 0.08 0.4735  

24 cat-2; 
DVA::HisCl 

-his prodtosearch 0.10 0.01 0.1004  

25 cat-2; 
DVA::HisCl 

-his prodtoprod 97.09 0.19 0.0508  

26 cat-2; 
DVA::HisCl 

-his prodtoslip 2.62 0.17 0.0502  

27 cat-2; 
DVA::HisCl 

-his prodtosperm 0.20 0.01 0.0090 ** 
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28 cat-2; 
DVA::HisCl 

-his sliptosearch 0.97 0.01 0.0275  

29 cat-2; 
DVA::HisCl 

-his sliptoprod 4.23 0.19 0.3363  

30 cat-2; 
DVA::HisCl 

-his sliptoslip 93.44 0.19 0.6353  

31 cat-2; 
DVA::HisCl 

+his searchtosearch 92.41 0.12 0.6077  

32 cat-2; 
DVA::HisCl 

+his searchtoprod 4.13 0.1 0.5546  

33 cat-2; 
DVA::HisCl 

+his searchtoslip 2.75 0.05 0.3940  

34 cat-2; 
DVA::HisCl 

+his prodtosearch 0.57 0.02 <0.000
1 

*** 

35 cat-2; 
DVA::HisCl 

+his prodtoprod 92.14 0.24 0.0121 * 

36 cat-2; 
DVA::HisCl 

+his prodtoslip 6.78 0.24 0.0543  

37 cat-2; 
DVA::HisCl 

+his prodtosperm 0.51 0.01 <0.000
1 

** 

38 cat-2; 
DVA::HisCl 

+his sliptosearch 1.26 0.03 0.0028 ** 

39 cat-2; 
DVA::HisCl 

+his sliptoprod 9.31 0.13 0.2874  

40 cat-2; 
DVA::HisCl 

+his sliptoslip 89.07 0.14 0.1432  

41 cat-2; 
DVA::HisCl 

recovery searchtosearch 95.03 0.08 0.0861  

42 cat-2; 
DVA::HisCl 

recovery searchtoprod 3.42 0.04 0.9637  

43 cat-2; 
DVA::HisCl 

recovery searchtoslip 1.55 0.07 0.0760  

44 cat-2; 
DVA::HisCl 

recovery prodtosearch 1.01 0.07 <0.000
1 

*** 

45 cat-2; 
DVA::HisCl 

recovery prodtoprod 91.44 0.32 0.0048 ** 

46 cat-2; 
DVA::HisCl 

recovery prodtoslip 6.98 0.27 0.0401  

47 cat-2; 
DVA::HisCl 

recovery prodtosperm 0.57 0.02 <0.000
1 

** 

48 cat-2; 
DVA::HisCl 

recovery sliptosearch 0.33 0.01 0.1802  

49 cat-2; 
DVA::HisCl 

recovery sliptoprod 4.09 0.19 0.2876  

50 cat-2; 
DVA::HisCl 

recovery sliptoslip 95.58 0.19 0.1924  
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Figure 4.12:  Bootstrap data distributions for all sub-behaviors of the cat-2, DVA-

silencing experiment.  
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Figure 4.13: Raw mating traces from nlp-12 mutant and epistatis with ntc-1. Top, 

colorized mating schema indicating the color code for the behavioral traces. Bottom, raw 

mating traces for wild-type, nematocin deficient (ntc-1), NLP-12 deficient (nlp-12), and 

the copeptide knockout (ntc-1;nlp-12). Wiring diagram (top right) indicates the neuron(s) 

affected by the gene.  
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Figure 4.14: Raw mating traces from trp-4 12 mutant and epistatis with ntc-1.Top, 

colorized mating schema indicating the color code for the behavioral traces. Bottom, raw 

mating traces for wild-type, nematocin deficient (ntc-1), TRP-4 channel deficient (trp-4), 

and the double knockout (ntc-1;trp-4). Wiring diagram (top right) indicates the neuron(s) 

affected by the gene.  
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Figure 4.15: Raw mating traces from cat-2 12 mutant and epistatis with ntc-1. Top, 

colorized mating schema indicating the color code for the behavioral traces. Bottom, raw 

mating traces for wild-type, nematocin deficient (ntc-1), Dopamine deficient (cat-2), and 

the double knockout (cat-2;ntc-1). Wiring diagram (top right) indicates the neuron(s) 

affected by the gene. 
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Figure 4.16:. Raw mating traces from silencing DVA in dopamine-deficient males. 

Top, colorized mating schema indicating the color code for the behavioral traces. Bottom, 

raw mating traces for nematocin-deficient and transgene positive, dopamine-deficient  

males in both the presence and absence of histamine.  Right, males that did not mate from 

the DVA-silenced test group retested after a two hour incubation off histamine.  Each 

mating trace is five minutes. White space indicates the conclusion of mating after sperm 

has been transferred.   
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CHAPTER V: DVA ACTIVITY DURING MATING 

Introduction 

 In Chapter III, I established that DVA activity was important for coherent mating 

behavior, and that acutely silencing DVA just prior to mating disrupted mating at the prod 

to sperm transfer and slip to prod state transitions via the action of nematocin.  In Chapter 

IV, I established that dopamine was responsible for the regulation of nematocin action. 

Dopamine deficiency leads to a disregulation of nematocin, either too much of the peptide, 

or release of the peptide at inappropriate times.  From here, I wanted to understand DVA’s 

activity in the context of mating, and how that activity changed in different genetic 

backgrounds, such as a dopamine-deficient background.   

 To do so, I expressed the fluorescent calcium indicator GCaMP5A (Akerboom et 

al., 2013) in DVA under the nlp-12 cell-specific promoter fragment (Hu et al., 2011).  

These experiments were conducted in a lite-1 background to reduce the effects of the 

fluorescent microscopy’s excitatory light on the behavior of the mating males (Liu, J. et al. 

2010).  Males with the integrated GCaMP transgene were assayed for mating and imaged 

under GFP fluorescent microscopy settings as described in the EXPERIMENTAL 

PROCEDURES. Ten wild-type, dopamine-deficient, and nematocin-deficient males were 

tested, as well as five control males expressing GFP in DVA.  8/10 wild-type animals mated 

during the assay, 4/10 of the nematocin-deficient animals mated, and 0/10 of the dopamine-

deficient animals mated, comparable to mating efficiencies under bright-field microscopy.  

Figure 5.1 shows representative traces for wild-type, dopamine-deficient, and nematocin-

deficient males of DVA calcium activity as they mate. Figure 5.5, 5.6, and 5.7 present all 
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raw traces of the data, and Figure 5.8 presents the traces of animals expressing GFP in 

DVA in place of GCaMP.  

 
Figure 5.1: Examples of DVA activity in wild-type, dopamine-deficient, and 

nematocin-deficient males during mating.  Top: Representative trace of DVA activity in 

a wild-type male while mating.  Middle: Representative trace of DVA activity in a 

dopamine-deficient male while mating. Bottom: Representative trace of DVA activity in a 

nematocin-deficient male while mating. Colors correspond to the sub-behaviors being 

performed at the time (x-axis) according to the following key: black-contact; light blue-

vulva search; green-prodding; maroon-slipping; yellow-sperm transfer; and red-leaving.  

y-axis is the ΔF/Fmax, background adjusted and then normalized on a 0 to 1 scale.  

 

DVA activity correlates with mating behavior 
 
 From the raw calcium traces of the wild-type animals, I qualitatively established 

behavior patterns corresponding to patterns of DVA activity.  Calcium signal in DVA 

reliably rose with the onset of prodding behavior (green) that followed  slipping behavior 

(maroon) (Figure 5.1, Figure 5.5). Slipping behaviors were often accompanied or 
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preceded by a decrease in calcium signal.  Furthermore, during a prodding event, calcium 

signals in DVA fell several second before sperm transfer.   

In dopamine-deficient males, prodding events were not reliably accompanied by 

rises in DVA calcium levels, and DVA calcium signal both rose and fell in association with 

slipping (Figure 5.1, Figure 5.6).  GCaMP signal appeared to have a higher resting state 

in these males, a smaller dynamic range, and were also less stable, “flickering” more during 

the course of the mating.  In nematocin-deficient males, rises in calcium signal 

accompanied prodding events, but were less robust (Figure 5.1, Figure 5.7).  As in 

dopamine-deficient males, rises and falls in signal were observed during slipping behavior.  

Calcium decreases preceding sperm transfer were also observed, but were less dramatic in 

nematocin-deficient males than in wild-type.  The differences in the nematocin-deficient 

animals suggests that nematocin itself auto-regulates DVA activity through a feedback 

mechanism that remains to be elucidated. 

 

DVA activity drops significantly prior to the onset of sperm transfer 

To characterize these trends quantitatively, I performed “event-triggered analysis” 

on the data: aligning sections of traces based on the onset of a behavioral event, and taking 

the average of the signal during a time interval before and after the event. The onset of the 

event is defined as time = 0 and fluorescence at that point is by definition F0. This allowed 

me to calculate changes in fluorescence with reference to the onset of this event.  I first 

performed this analysis on the signal at the prod to sperm transfer transition in wild-type 

animals (Figure 5.2).  Individual traces of these events can be seen in green during 

prodding and in yellow during sperm transfer (Figure 5.2, A). Signal was smoothed 
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Figure 5.2: A significant drop in calcium signal precedes sperm transfer in mating 

males. A: individual calcium traces for wild-type males, aligned by the onset of sperm 

transfer (yellow).  Green/yellow traces are the smoothed DVA::GCaMP signal from mating 

males. Blue line represents the median of all the trace values at the given time point.  x-

axis is time before and after the onset of the sperm transfer event (0 sec).  y-axis is the 
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ΔF/F0, where F0 is the fluorescence at the onset of sperm transfer. B: individual calcium 

traces for wild-type males without the “outlier trace.” C: individual calcium traced for 

ethogram-shuffled DVA::GCaMP controls.  D: individual calcium traced for ethogram-

shuffled DVA::GCaMP controls without the “outlier trace.” E: Box and whisker plots of 

signal values at the maximum median values of the data.  α compares the signal distribution 

of the wild-type and shuffled data at the timepoint of the wild-type’s maxiumum median 

value.  β compares the signal distribution at the timepoint of the shuffled data’s maximum 

value.  Whiskers show the minimum and maximum values of the distribution. P values 

were calculated with the Mann Whitney Test. F: Box and whisker plots of signal values at 

the maximum median values of the data without the outlier. γ compares the signal 

distribution of the wild-type and shuffled data at the timepoint of the wild-type’s 

maxiumum median value. δ compares the signal distribution at the timepoint of the 

shuffled data’s maximum value. 

 

according to the “smoothdata” function in Matlab®, which averages the signal over an 

interval determined heuristically.  The median of the traces is indicated with the thick blue 

line, and its maximum signal was calculated to be at time value α, approximately 15  

seconds prior to the onset of sperm transfer.  At this point, the median calcium signal for 

wild-type animals is 3-fold higher than at the moment of sperm transfer.   

 To determine if this decrease in signal was statistically significant, I created a 

control data set by shuffling the ethograms of the wild-type traces, selecting the same 

number of events as my wild-type data (in this instance, 8 traces), and re-running the 

analysis (see EXPERIMENTAL PROCEDURES).  This triggered the “event” at random 

times in the GCaMP signal traces, which could then be sorted and analyzed in a similar 

fashion as the authentic traces (Figure 5.2, C).  Constructing the control data in this fashion 

accounted for the internal noise of the samples being analyzed, as the data comes directly 

from those samples.  I next graphed the median signal of these traces (blue line) and found 
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the maximum median value at timepoint β, approximately 8 seconds after the onset of 

sperm transfer, measuring <0.1 times F0. All the trace values at timepoints α (~15 sec. 

before sperm transfer) and β (~8 sec. after sperm transfer) for the wild-type and ethogram 

shuffled data were then statistically compared with the Mann-Whitney Test. This data is 

presented both as a “box and whiskers” plot (Figure 5.2, E).  Wild-type and ethogram 

shuffled traces varied significantly at timepoint α, with a p value of 0.0379, and were not 

significantly different at timepoint β, with a p value of 0.7209.  Thus, the data suggests that 

there is a significant drop in activity in DVA approximately 15 seconds prior to the onset 

of sperm transfer.  By performing the same analysis at the timepoint of the maximum 

median signal of my shuffled ethogram data, I do not “trigger” a false positive, as those 

distributions are not significant. 

 I then wondered if the trace containing the largest dynamic change (12-fold, 

approximately 2 times the fold change of the next dynamic trace) was skewing the 

distribution, and therefore my statistical results.  To address this, I performed the same 

analysis on the data without this trace (Figure 5.2).  Median signal is presented in blue, 

and the remaining 9 traces had their ethograms shuffled to create a control data set (Figure 

5.2, D).  The maximum median signal for the wild-type data was found to be at timepoint 

γ (~12 sec. before sperm transfer), and the maximum median signal for the shuffled 

ethogram was found to be at timepoint δ (~5 sec. after sperm transfer). All values for the 

traces of wild-type and ethogram-shuffled males at these corresponding timepoints were 

then compared using a Mann-Whitney test for statistical significance (Figure 5.2, F). The 

difference in distribution signal values at timpoint γ were for wild-type animals was 

statistically significant, with a p value of 0.0403, while the difference in signal at timepoint 
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δ was not statistically significant between the two data sets (p value of 0.3176).  This result 

recapitulates the analysis including the outlying trace, and allows me to conclude that my 

result is not dependent on the existence of a single extreme data point.  

Because none of the dopamine-deficient animals mated, a similar analysis on them 

could not be performed.  By looking at the raw traces, I observe that none of the traces rise 

in levels comparable to wild-type animals during prodding events.  I posit that if the signal 

never rises, it is never able to fall and trigger the sperm transfer event.  

 

Wild-type animals show asymmetrical activity in DVA in slipping and prodding 

transitions 

  I next investigated DVA activity at the prodding and slipping transitions using the 

same “event-triggered” analysis.  Individual traces that began in slipping (maroon), and 

transitioned into prodding (green) were aligned at the onset of prodding (Figure 5.3, A).  

The median of the signal traces is graphed with the same color convention in Figure 5.3, 

C.  To characterize the observed increase in calcium signal after the onset of prodding, the 

maximum of the median signal was found at timepoint ε, approximately 6 seconds after 

the onset of prodding.  A control data set was also constructed in the same manner as the 

prod to sperm transfer analysis: by randomly shuffling the ethogram to “trigger” the 

prodding even at random times in the calcium trace.  The median of these signal traces is 

graphed in purple (Figure 5.3, C). The difference in the distribution of signals of the wild-

type and ethogram-shuffled data sets was then statistically analyzed with a Mann-Whitney 

test (Figure 5.3, E), and determined to be statistically significant (p value of 0.0226).  Thus, 

the increase in signal succeeding the onset of the prodding event is quantitatively verified.  
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Figure 5.3: DVA activity increases at the slip to prod transition in wild-type males. A: 

Individual calcium traces for wild-type males slipping (maroon), aligned by the onset of 

prodding (green).  x-axis: time before and after the event onset. y-axis: fold change in 

fluorescence where ‘0’ is defined as the fluorescence at the onset of the event.  B: 

Individual calcium traces for wild-type males prodding, aligned by the onset of slipping.  

Middle: Graphs of the median values for the slip to prod (C) and prod to slip (D) data at 

all timepoints.  Shuffled control data medians graphed in purple.  E: box and whiskers plots 

for the signal distribution for wild-type and shuffled data at the at timepoint of the 
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maximum median value (ε) of the wild-type data. F: box and whiskers plots for the signal 

distribution for wild-type and shuffled data at the at timepoint of the minimum median 

value of the wild-type data (ζ). Whiskers show minimum and maximum values of the 

distribution.  P values calculated by the Mann Whitney Test. 

  
 To ensure that the significant rise in signal is unique to prodding behavior, and not 

just any behavior, I also analyzed the calcium signal at the prod to slip transition in the 

same manner (Figure 5.3, B, D, and F).  Traces that began with prodding and transitioned 

to slipping were aligned at the onset of slipping (Figure 5.3, B) and the median of all the 

traces was graphed (Figure 5.3, D).  The trend at the onset of slipping was to decrease in 

signal, not to increase in signal, so the minimum median value was determined to be at 

timepoint ζ, approximately 7.5 seconds after the onset of slipping.  A control data set was 

generated by shuffling the ethograms and thereby randomly triggering slipping events in 

the calcium traces.  The signals of these two data sets were compared at timepoint ζ with a 

Mann-Whitney test (Figure 5.3, F) and determined to be not statistically significant, with 

a p value of 0.0842.  This demonstrates that not every sub-behavior of mating correlates 

with a coordinated change in DVA activity, but that this feature is unique to the onset of 

prodding and the prodding behavior that directly precedes sperm transfer.   

 

Dopamine-deficient animals do not have coordinated changes in DVA activity at 

prodding or slipping transitions 

While none of the dopamine-deficient animals successfully mated in this assay, 

they did undergo a number of slip to prod and prod to slip transitions (Figure 5.4).  Figure 

5.4, A that begins in the slipping sub-behavior and transitions to the prodding sub-behavior. 
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Figure 5.4: DVA activity does not significantly increase at the slip to prod transition 

in dopamine-deficient males. A: Individual calcium traces for dopamine-deficient males 

slipping (maroon), aligned by the onset of prodding (green).  x-axis: time before and after 

the event onset. y-axis: fold change in fluorescence where ‘0’ is defined as the fluorescence 

at the onset of the event.  B: Individual calcium traces for dopamine-deficient males 
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prodding, aligned by the onset of slipping.  Middle: Graphs of the median values for the 

slip to prod (C) and prod to slip (D) data at all timepoints.  Shuffled control data medians 

graphed in purple.  Bottom: Individual slip to prod (E) and prod to slip (F) traces for males 

expressing GFP in DVA. Median of traces graphed in blue.  

  
The median signal for these traces is graphed in Figure 5.4, C.  The median signal for a 

dopamine-deficient, ethogram-shuffled control data set is graphed in Figure 5.4, C in 

purple. No clear change in GCaMP signal is observed, so no minimum or maximums in 

the median signal could be identified.  Dopamine-deficient and ethogram shuffled control 

data set medians largely overlap and do not veer far from the F0 value.  To compare, the 

signal traces for males expressing GFP in DVA were also graphed (Figure 5.4, E) with 

their median (blue).  In these controls, I also do not see significant changes in signal at the 

onset of prodding, and these look similar to the dopamine-deficient male data.  

 The analysis was repeated for events that began with prodding and transitioned to 

slipping.  No significant change was observed here either, nor were the dopamine-deficient 

traces significantly different from the ethogram-shuffled data nor the GFP control data 

(Figure 5.4, B, D, and F).  

Discussion 

 DVA, the neuron releasing the neuropeptide nematocin, has activity at behavioral 

transitions that correspond to those previously identified by genetic and pharmacogenetic 

evidence.  Either silencing DVA or genetically knocking out the nematocin gene resulted 

in a diminution of the prod to sperm transfer and the slip to prod transition probabilities 

during mating behavior.  Similar defects were present in dopamine-deficient males, which 

I postulate mate poorly due to a dysregulation of nematocin.   
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 Here I show a potential mechanism for DVA dysregulation.  In the case of prod to 

sperm transfer I see a clear drop in GCaMP signal just prior to the transition.  I suggest 

that dopamine-deficient animals do not carry out this transition because they do not achieve 

a signal rise significant enough support a drop.  In the case of the slip to prod transition, 

where I do have dopamine-deficient traces to analyze, I see a clear increase in signal upon 

the onset of prodding in wild-type animals, and no such trend in dopamine-deficient 

animals.   

 The emerging model suggests a number of conclusions.  For one, it indicates that 

the dynamics of nematocin release and not the absolute levels are important to mating 

regulation.  To trigger sperm transfer, it is not that nematocin be present or absent, but that 

the levels drop.  To signal the onset of prodding, I suggest that nematocin release increases 

with DVA activity, is not merely present, otherwise this transition would be preserved in 

dopamine-deficient animals.   

 Secondly, because DVA activity suggests a directionality, I propose that the role of 

nematocin is to assist the animal in productive persistence in the prodding state. If DVA 

activity corresponds to nematocin release, then it would follow that nematocin levels 

increase at the onset of prodding in the slip to prod transition.  In nematocin-deficient 

animals, I observe an increased tendency to persist in the prodding state compared to their 

wild-type counterparts. Without nematocin, they are less likely to make the prod to sperm 

transfer transition.  DVA activity at the slip to prod and prod to sperm transfer transitions 

is partially preserved (Figure 5.2), but these animals lack the neuropeptide presumably 

released with the changes in neuronal activity.  Thus, it cannot be the dynamics of DVA 
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independent of nematocin responsible for the behavioral transitions, but the dynamics of 

the neuropeptide’s action in DVA itself. 

 In the next chapter, I will explore how dopamine communicates with DVA to 

tightly couple its activity with the mating behavior.   
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Figure 5.5: Raw traces of DVA activity in wild-type, mating males. 
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Figure 5.6: Raw traces of DVA activity in dopamine-deficient, mating males. 



114 
 

 
Figure 5.7: Raw traces of DVA activity in nematocin-deficient, mating males. 
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Figure 5.8: Raw traces of wild-type mating males expressing GFP in DVA. 
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CHAPTER VI: HOW DOPAMINE COMMUNICATES WITH DVA 
 
 The following chapter presents many experiments in which the data has not been 

completed entirely at the time of writing this thesis.  However, it is my opinion that the 

work here presented is an important addition to the thesis as a whole, and that these 

preliminary results will hold up as the n values are increased to the numbers determined by 

the power calculation.  It is not my intention to overstate the findings. I try to present the 

data, and its limitations, as authentically as possible, for your consideration.  

 

Screening dopamine receptors for mating defects  

 How does dopamine communicate with DVA? At the onset of this investigation, 

there was no evidence for any dopamine receptor expression in DVA.  Attempts to express 

GFP driven by receptor promoter fragments or GFP labeled fosmids further did not yield 

any tangible evidence.  This could be a false negative for a number of reasons: incomplete 

fragment, expression level below the detection threshold, and so on.  In their 2017 paper, 

Cao, J., et al.  report dop-1, dop-2, dop-4, and lgc-53 transcription in DVA (Cao et al., 

2017).  This was conducted in L2 hermaphrodites, and may not be relevant to adults or 

males.   

 Due to the lack of conclusive data, I decided to screen all known dopamine receptor 

mutants for mating defects comparable to nematocin-deficient males.  Figure 6.1 presents 

the mating efficiency results from this screen.  dop-3 and dop-4 males each had significant 

mating defects comparable to nematocin-deficient animals. 3/10 dop-3(vs106) males mated 

within the five-minute assay (30%), as did 6/20 of the dop-4(ok1321) males (Figure 6.1). 

Second alleles tested for these mutants mated at similar efficiency, 9/20 for dop-3(ok295) 
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males (45%) and 4/10 males for dop-4(tm1392) (Figure 6.1).  When combined, the dop-

3;dop-4 double mutant males recapitulated the dopamine-deficient mating efficiency 

(Figure 6.1). 1/10 males mated in the five-minute assay, or 10%, suggesting that the two 

receptor mutants together can entirely account for dopamine’s regulation of DVA. 

 
 

Figure 6.1: Dopamine receptor mutant screen for mating efficiency. Light gray: mating 

efficiency of wild-type males. Dark gray, mutant test males. Y-axis: fraction of males that 

mated in a five-minute assay.  Actual mating fraction is labelled above its respective bar 

graph.  P values were calculated with a Fisher Exact Test, and a False Discovery Rate to 

correct for multiple comparisons.    

 
 To validate DOP-3 and DOP-4’s role in dopamine signaling in DVA, I performed 

cell-specific rescues under the DVA specific nlp-12 promoter fragment (Hu et al., 2011).  

Both dop-3 and dop-4 cDNA partially restored mating to wild-type levels (Figure 6.2). 

The nlp-12 promoter fragment was tested on its own in both the wild-type and mutant 
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backgrounds to ensure that the rescue phenotype was not due to promoter interaction. In 

the case of dop-3, mating was restored from 3/10 or 30% to 15/20 or 75% (Figure 6.2 left) 

when cDNA was specifically expressed in DVA. Similarly, when dop-4 was specifically 

expressed in DVA, mating was restored from 3/10 or 30% to 7/10 or 70% (Figure 6.2, 

right).  This fell just shy of achieving statistical significance (p = 0.0562), even in the 

absence of the False Discovery Rate threshold, but it is also the case that the data sets are 

not complete, containing fewer mating trials than the power calculation dictated for the 

experiment (see EXPERIMENTAL PROCEDURES).  It is my belief that, with the 

appropriate number of trials, this result will achieve statistical significance.   

 

 
Figure 6.2: DVA-specific cell rescues for dop-3 and dop-4 restore mating.  Light gray: 

mating efficiency of wild-type males; dark gray: mutant test males and transgene controls; 

medium gray: males expressing cDNA of rescue construct in DVA specifically. Y-axis: 

fraction of males mated in 5-minute assay.  Actual mating fraction is labelled above its 

respective bar graph.  P values were calculated with a Fisher Exact Test and a False 

Discovery Rate to correct for multiple comparisons.    
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A dynamic model of mating for dop-3 and dop-4 animals  

I next decided to model the mating behavior of dop-3, dop-4, and double receptor 

mutant males using the same approach as before (see EXPERIMENTAL PROCEDURES). 

p values were calculated by comparing the experiment-to experiment variability of wild-

type males (Table 15) using an unpaired, two-tailed Student’s t test, just as before, and 

corrected for multiple comparisons using a False Discovery Rate threshold.  These values 

are published in Table 13 and the histograms from the bootstrapping analysis is presented 

in Figure 6.4, both at the end of the chapter. Significant results are summarized in Table 

12 below. 

transition probability w.t. dop-3 dop-4 dop-3;dop-4 
vulva search to vulva search 91.36 94.07 93.77 85.21 

vulva search to prod* 5.51 5.59 3.08 9.68 
vulva search to slip 3.13 0.34 2.86 4.37 

prod to vulva search* 0 1.11 0 0.49 
prod to prod* 93.05 92.58 87.33 95.29 
prod to slip* 5.37 5.93 12.32 4.07 

prod to sperm transfer 0.96 0.38 0.34 0.16 

slip to prod* 15.1 5.92 15.15 5.82 

slip to slip* 84.05 93.3 82.95 92.32 

 
  
 Nine out of ten of the transition probabilities have significantly altered values in 

the mating of either dop-3, dop-4, or dop-3;dop-4 males. Despite the complexity of these 

phenotypes, patterns do emerge. All genotypes are defective in the prod to sperm transfer 

Table 12: Summary of significant results from Table 13. Mean transition probabilities 

for wild-type (w.t.), DOP-3 mutant (dop-3), DOP-4 mutant (dop-4), and double mutant 

(dop-3;dop-4) are shown. Mean values significantly higher than wild-type controls are in 

bold. Mean values significantly lower than wild-type controls are in red.  Interesting 

examples where dop-3 and dop-4 have reciprocal phenotypes are indicated with an asterisk 

(*).   
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transition probability. dop-3 and dop-4 mutants have approximately the same transition 

probability, 0.38+/-0.03% and 0.34+/-0.01 respectively (Table 12, Figure 6.3).  dop-

3;dop-4 males exhibited a prod to sperm transfer transition probability of 0.16+/-0.01% 

(Table 12, Figure 6.3), approximately the product of the two individual receptor mutant 

probabilities. One transition probability, vulva search to vulva search was defective only 

in the double receptor mutant, falling from 91.36+/-0.19% to 85.21+/-0.20% (Table 12, 

Figure 6.3).  vulva search to slipping was defective in the wild-type control males of this 

experiment, making this transition probability difficult to interpret.  

All other changes in transition probability have reciprocal phenotypes between dop-

3 and dop-4 mutants.  prod to vulva search transition probabilities were elevated in dop-3 

and the double receptor mutant, but not dop-4 males (1.11+/-0.03% and 0.49+/-0.02% vs. 

0.00+/-0.00%, Table 12, Figure 6.3).  The converse transition probability, vulva search to 

prod, was significantly lower in dop-4 males but not in dop-3 or double receptor mutant 

males (3.08+/-0.04% vs 5.59+/-0.04% and 9.68+/-0.24%, Table 12, Figure 6.3).  A similar 

pattern was observed at the slip to prod and prod to slip transitions.  dop-3 and dop-3;dop-

4 males had decreased probabilities in the slip to prod transition, 5.92+/-0.10% and 5.82+/-

0.21%, and increased tendency to persist in slipping, 93.30+/-0.11% and 92.32+/-0.21% 

respectively (Table 12, Figure 6.3).  dop-4 males, conversely, had elevated prod to slip 

transition probability, 12.32+/-0.26%, up from 5.37+/-0.09% in wild-type males (Table 

12, Figure 6.3), and a decreased tendency to persist in prodding, 87.33+/-0.26% vs wild-

type’s 93.05+/-0.06% (Table 13, Figure 6.3).  The double receptor mutant more closely 

resembled dop-3 than dop-4.    
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Figure 6.3: Dynamic modeling of the mating behavior of dop-3, dop-4, and dop-3;dop-

4 males.  Vulva search represented with blue circles, prodding with green circles, and 

slipping with maroon circles.  Numbers within a circle are the percent time in which the 

animals engage in that sub-behavior when mating.  Arrow weights represent the probability 

in a given second that the animal will transition between behaviors. Curved arrows pointing 

back toward the circle indicate the probability per second that the animal will persist in the 

sub-behavior. Genotypes are labeled.    

 

Discussion: D1-like and D2-like receptors antagonize each other to attenuate DVA 

activity 

 Here, I have identified two dopamine receptors responsible for communicating 

dopamine signaling to DVA by screening genetic candidates for behavioral defects in 

mating, and also by rescuing these behavioral defects by expressing the genes for these 

receptors specifically in DVA.  Ethomic analysis of the mating defects of these receptor 
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mutants reveals equivalent and reciprocal mating defects.  These results are particularly 

interesting given the molecular biology of DOP-3 and DOP-4.   DOP-4 is a Gs-coupled, 

cAMP activating D1-like receptor (Suo et al., 2004), while DOP-3 is Go-coupled, cAMP 

inhibiting D2-like receptor (Suo et al., 2004).  Their antagonistic effects are reflected in the 

general reciprocal relationship of the behavioral phenotypes of the receptor mutants.  

Where dop-3 will exhibit an alteration in one transition frequency, for example, a decrease 

in slip to prod transition frequency, dop-4 will exhibit the converse and opposite alteration, 

for example an increase in prod to slip transition frequencies.  Notably, the double receptor 

mutant more closely resembles DOP-3, the cAMP inhibitory receptor.  This is consistent 

with my hypothesis that dopamine signaling regulates DVA by “quieting” its activity, until 

the balance is disrupted by a triggering event (Chapter V).     
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Table 13: Means, standard deviations, p values, and effect sizes for dop-3, dop-4 

receptors and their double knockout p values were determined by an unpaired, two-

tailed Student’s t test with the mean and s.d. from dopamine-deficient controls calculated 

in Table 17 (see EXPERIMENTAL PROCEDURES). Statistical significance was 

determined by the p value and a False Discovery Rate multiple comparison correction. 

Statistically significant results are depicted in bold.  

index genotype probability mean sd p val sig? 
1 wild-type searchtosearch 91.36 0.19 0.1604  
2 wild-type searchtoprod 5.51 0.08 0.5034  
3 wild-type searchtoslip 3.13 0.16 0.0083 ** 
4 wild-type prodtosearch 0.00 0.00 0.3434  
5 wild-type prodtoprod 93.05 0.06 0.6849  
6 wild-type prodtoslip 5.37 0.09 0.8847  
7 wild-type prodtosperm 0.96 0.02 1.000  
8 wild-type sliptosearch 0.00 0.00 0.0155  
9 wild-type sliptoprod 15.10 0.29 0.8937  
10 wild-type sliptoslip 84.05 0.26 0.3986  
11 dop-3 searchtosearch 94.07 0.04 0.1783  
12 dop-3 searchtoprod 5.59 0.04 0.4295  
13 dop-3 searchtoslip 0.34 0.01 0.1759  
14 dop-3 prodtosearch 1.11 0.03 <0.0001 *** 
15 dop-3 prodtoprod 92.58 0.19 0.2750  
16 dop-3 prodtoslip 5.93 0.15 0.4507  
17 dop-3 prodtosperm 0.38 0.03 0.0011 ** 
18 dop-3 sliptosearch 0.78 0.02 .7151  
19 dop-3 sliptoprod 5.92 0.10 <0.0001 *** 
20 dop-3 sliptoslip 93.30 0.11 0.0034 ** 
21 dop-4 searchtosearch 93.77 0.02 0.2871  
22 dop-4 searchtoprod 3.08 0.04 0.0115 * 
23 dop-4 searchtoslip 2.86 0.03 0.0165 * 
24 dop-4 prodtosearch 0.00 0.00 0.3434  
25 dop-4 prodtoprod 87.33 0.26 <0.0001 *** 
26 dop-4 prodtoslip 12.32 0.26 <0.0001 *** 
27 dop-4 prodtosperm 0.34 0.01 0.0007 *** 
28 dop-4 sliptosearch 1.18 0.03 0.3482  
29 dop-4 sliptoprod 15.15 0.15 0.9412  
30 dop-4 sliptoslip 82.95 0.12 0.1750  
31 dop-3;dop-4 searchtosearch 85.21 0.20 <0.0001 *** 
32 dop-3;dop-4 searchtoprod 9.68 0.24 <0.0001 *** 
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33 dop-3;dop-4 searchtoslip 4.37 0.10 0.0005 *** 
34 dop-3;dop-4 prodtosearch 0.49 0.02 <0.0001 *** 
35 dop-3;dop-4 prodtoprod 95.29 0.11 0.0126 * 
36 dop-3;dop-4 prodtoslip 4.07 0.10 0.2150  
37 dop-3;dop-4 prodtosperm 0.16 0.01 <0.0001 *** 
38 dop-3;dop-4 sliptosearch 0.74 0.02 0.6200  
39 dop-3;dop-4 sliptoprod 5.82 0.21 <0.0001 *** 
40 dop-3;dop-4 sliptoslip 92.32 0.21 0.0072 ** 
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Figure 6.4:  Bootstrap data distributions for all sub-behaviors of dop-3, dop-4, and 

dop-3;dop-4 mating males.  
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Figure 6.5: Raw mating traces from dopamine receptor genetic screen. Top, raw 

mating traces for dopamine receptor screens, including wild-type, ligand chloride channel 

lgc-53, receptors dop-1, dop-2, dop-3 (alleles ok295 and vs106), dop-4 (alleles ok1321 and 

tm1392), and the dop-3;dop-4 double mutant. Bottom, colorized mating schema indicating 

the color code for the behavioral traces. 
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Figure 6.6: Raw mating traces from DVA-specific rescue of dop-3. Top, colorized 

mating schema indicating the color code for the behavioral traces. Bottom, raw mating 

traces for dop-3 rescue in DVA and controls. Top row are all wild-type males. Bottom row 

are all dop-3 males. Left column have no transgene.  Middle column has only the DVA-

specific promoter fragment. Right column expresses dop-3 cDNA under the DVA-specific 

promoter. 
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Figure 6.7: Raw mating traces from DVA-specific rescue of dop-4. Top, colorized 

mating schema indicating the color code for the behavioral traces. Bottom, raw mating 

traces for dop-4  rescue in DVA and controls. Top row are all wild-type males. Bottom row 

are all dop-4 males. Left column have no transgene.  Middle column has only the DVA-

specific promoter fragment. Right column expresses dop-4 cDNA under the DVA-specific 

promoter. 
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CHAPTER VII:  CONCLUDING REMARKS 
 
Nematocin regulates mating behavior largely by acute release from DVA 

 In Chapter III, I recapitulated the nematocin knockout mating defect by acutely 

silencing DVA with HisCl in fully mature adult males just prior to mating.  I was able to 

restore mating in the same animals by allowing them to recover off histamine before 

attempting to mate again.  By modeling the dynamic behavior of these animals, I was able 

to identify a constellation of mating sub-behavior state transitions affected by DVA 

silencing.  I then repeated the DVA silencing experiment in nematocin-deficient animals, 

which allowed me to differentiate which of the affected state transitions were nematocin-

mediated, and which were likely the result of DVA’s other functions.  prod to sperm 

transfer, slip to prod, and persistence in the slipping state were identified as state transitions 

mediated by acute nematocin release from DVA.  

 

Dopamine regulates nematocin action 

 With a candidate gene screen, I identified and characterized the genetic epistasis 

relationship between genes required for dopamine and nematocin signalling.  By knocking 

out nematocin in dopamine-deficient males, I was able to rescue the mating phenotype to 

nematocin-deficient mating levels.  Dynamic behavioral analysis of these mutants revealed 

a constellation of state transition changes that overlapped with those seen in the DVA 

silencing experiment in Chapter III: slip to prod, and persistence in the slipping state. prod 

to sperm transfer was more defective in dopamine-deficient animals than in other tested 

groups. I then orthogonally recapitulated the genetic epistasis result with a neural circuit 

manipulation: by pharmacogenetically silencing DVA in the dopamine-deficient animals.  

Dynamic behavioral analysis revealed that all state transitions were ameliorated by this 
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manipulation except slip to prod, persistence in the slipping state, and, partially, prod to 

sperm transfer, once again presenting me with the same anchors of behavioral evidence as 

the previous experiments.  

 

Dopamine regulates the coordination of DVA activity with mating behavior 

 By expressing GCaMP in DVA, I was able to visualize changes in cellular calcium 

levels while the animals were mating.  In wild-type males, I established patterns where 

specific dynamics corresponded to the onset of behaviors or behavioral transitions. Two 

examples are the drop in GCaMP signal just prior to sperm transfer, and the rise in GCaMP 

signal at the slip to prod transition.  In dopamine-deficient animals, GCaMP signal was 

observed, but had less robust dynamics that were not coordinated as in the wild-type 

animals.  Nematocin-deficient animals were also tested, showing a less severe loss of 

robustness and coordination than the dopamine-deficient animals, which suggests that 

nematocin signaling itself feeds back onto DVA activity through some mechanism. The 

presence of the nematocin receptor NTR-1 in R1B, which is presynaptic to DVA, provides 

a readily available hypothesis to investigate for this feedback.   

 The drop prior to sperm transfer was characterized and statistically tested using a 

randomly shuffled ethogram of the same mating/neuronal imaging traces.  It was 

determined to be a statistically significant change in the calcium dynamics, coupled with 

the behavior.  The same analysis could not be performed on dopamine-deficient males 

because none of the animals successfully transferred sperm during the assay.  One can 

presume that completion of mating is rare in dopamine-deficient males because DVA 
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rarely achieves a calcium level sufficiently high enough from which to drop, so as to signal 

the onset of sperm transfer.   

Calcium activity at slip to prod state transitions were analyzed in both wild-type 

and dopamine-deficient males.  Wild-type males exhibited a statistically significant 

increase upon the onset of prodding, which was not present in the dopamine-deficient 

animals.  This result reinforces the genetic result, where slip to prod transition probabilities 

decrease in dopamine-deficient animals.  Combined, the data suggest that the ramping up 

of nematocin release induces the mating animal to enter and persist in the prodding state, 

and, when it ramps down, leave the prodding state to carry out consummation.   

 

Both D1 and D2-like receptors communicate dopamine signals to DVA 

 A candidate gene screen based firstly on male mating behavior and secondly on 

DVA-specific rescue identified the D1-like receptor DOP-4 and the D2-like receptor DOP-

3 (Suo et al., 2004) as necessary for dopamine signaling to DVA. By knocking out both 

receptors, I was able to recapitulate the severe mating defect observed in dopamine-

deficient animals.  Dynamic behavioral analysis once again identified the prod to sperm 

transfer transition probability and the transition probabilities between prodding and 

slipping to be affected by the genetic perturbations.  Knocking out dop-4 caused an increase 

in prod to slip transitions and a decrease in prodding persistence.  Knocking out dop-3 

caused a decrease in slip to prod transition probabilities and an increase in slipping 

persistence. In each case, knocking out one receptor resulted in a similar transition 

probability of slip to prod and prod to slip behaviors within the genotype, either by 

elevating the probability (dop-4) or lowering it (dop-3).    
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   DOP-4, a Gs-coupled D1-like receptor (Suo et al., 2004), likely antagonizes the 

response of DOP-3, a Go-coupled D2-like receptor (Suo et al., 2004) to tightly couple 

nematocin action with a specific conditions. Many models have been proposed for this 

antagonism, from regulation of cAMP levels (Neve, et al., 2004), to Akt/PP2A signaling 

(Beaulieu, et al., 2005), to PLCβ activation Allen, et al. 2011) to direct regulation of the 

synaptic machinery (Dong, et al. 2018).  It has been demonstrated in C. elegans (Harris et 

al., 2010), in other invertebrates (Berry et al., 2012; Kim et al., 2007), and in mammals 

(Tritsch and Sabatini, 2012) that having dual activating/inhibiting receptors of different 

affinities for the same ligand is a common motif when trying to lock a neural response with 

another signal.  The higher-affinity receptor generates the baseline response to lower 

concentrations of the ligand.  Once a threshold is crossed, the lower-affinity receptor is 

activated, thereby terminating or otherwise altering the ligand response in the receptor-

expressing neuron.  DOP-3 is reported as having a higher affinity for dopamine than DOP-

4 when expressed in heterologous cell culture (Suo et al., 2003). I suggest that basal levels 

of dopamine assist in “quieting” DVA by activating its inhibitory, D2-like receptor, until 

it receives a specific signal ushered in by a rapid increase in dopamine levels.  At this point, 

the activating D1-like receptor precipitates Gs signaling and neuropeptide release.  I use 

calcium activity as a proxy for neuropeptide release, and it is indeed the case that calcium 

activity is disrupted at the behavioral transitions consistent with the dopamine and 

dopamine receptor genetic evidence, but this may not be entirely accurate.  Costa et al. 

showed that cAMP levels evoke dense core vesicle release independent of calcium activity 

(Costa et al., 2017).  Perhaps the calcium activity I observe experimentally is not the release 
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of nematocin alone, but the co-release of nematocin and DVA’s neurotransmitter 

acetylcholine (Pereira, L., et al., 2015).   

  

Nematocin release dynamics, not absolute levels, are important for mating behavior 

 In Chapter IV and V, I show how dopamine regulates the release of nematocin by 

regulating DVA activity at specific behavioral state transitions during mating behavior.  

What remains to be understood, however, is whether the dopamine-deficient defect is due 

to a general excess of nematocin, nematocin release at the wrong time, or some 

combination of the two.  Basal GCaMP signal in DVA for dopamine-deficient males 

qualitatively appeared to be elevated compared to wild-type, but this could be due to a 

variety of direct or indirect effects.  To satisfactorily address the mechanism, one would 

have to perform a calibration experiment, possibly lowering DVA activity artificially and 

in a controlled manner in both genotypes with a tool like HisCl, which is titratable at 

different levels, and measuring the decrease in signal.  

 My results indicate that the dynamics of nematocin release drive mating behavior, 

and not its presence/absence or absolute levels.  A similar mechanism has been 

demonstrated in other kinds of oxytocin-related physiology, specifically osteogenesis and 

maternal skeletal restructuring during parturition (Colaianni et al., 2014a).  Osteoblasts 

express the oxytocin receptor OXTR, for which oxytocin has high affinity as well as two 

of the three arginine-vasopressin receptors (Avpr1α and Avpr2), for which oxytocin has 

low affinity (Sun et al., 2016).  As oxytocin slowly ramps from low levels to high levels 

during the late stages of pregnancy, it activates the OXTR and promotes the dissolution of 

bone calcium in the service of promoting osteogenesis in the fetus (Colaianni et al., 2014b).  
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During childbirth, and during lactation post-partum, the mother receives surges of 

oxytocin, invoking activation of the lower affinity vasopressin receptors, which promote 

osteogenesis and the rebuilding of the bone mass lost during pregnancy (Di Benedetto et 

al., 2014; Sun et al., 2016). Much more remains to be learned about how the dynamics of 

neuromodulators govern behavior within the “central” nervous systems of animals.  

    

Nematocin induces persistence in the prodding state, possibly analogous to anxiolytic 

properties of other oxytocin homologs 

 By manipulating DVA both genetically and pharmacologically, I was able to 

demonstrate that nematocin regulates a male’s transitions into the prodding state from the 

slipping state and out of the prodding state into sperm transfer.  In the first case, the mating 

male must stop performing the repetitive forward and reverse movements of slipping and 

“pause” at the vulva in order to probe its spicules.  Something analogous is described in 

hermaphrodite C. elegans in Hums, et al. 2016.  DVA activity is routinely seen coupled 

with “pausing” in the animal locomotion when oxygen levels are reduced from 21% to 

10%.  Low oxygen is a favorable condition for laboratory C. elegans, often signaling the 

thickening of their food patches.  It would be interesting if this more general, perhaps more 

primal circuit of DVA-induced pausing in response to desirable stimuli was related to for 

the purposes of mating modulation.   

 Nematocin-deficient males and dopamine-deficient males have lower slip to prod 

transition probabilities, similar in magnitude to the prod to slip probabilities.  It appears as 

if, by knocking out these genes, the animal is no longer driven into the prodding state, but 

rather prod to slip and slip to prod are more “at equilibrium” with one another. We see 
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these transitions balance both by an increase in the prod to slip transition probability (DOP-

4) and by a decrease in the slip to prod transition probability (DOP-3) in behavioral 

ethomics for the dopamine receptors. 

Slipping can be a “high arousal” behavioral state, or a low one.  Males move back 

and forth vigorously or slowly and languidly along the body.  From the analysis I 

performed, it is not clear if there is a qualitative difference in nematocin-deficient slipping 

vs. dopamine-deficient slipping. The dopamine receptor data gives us some insight, 

however.  Males lacking DOP-3, the D2-like inhibitory dopamine receptor, have a 

phenotype similar to nematocin-deficient and dopamine-deficient males: a lowering of slip 

to prod transition probability to its prod to slip transition probability.  Males lacking DOP-

4, the D1-like excitatory receptor, on the other hand, equilibrate between the two 

behavioral states by raising the prod to slip transition probability to the slip to prod level.  

This is a condition of higher arousal, where in the same amount of time, the dop-4 male 

moves from one state to the next with a higher frequency than its dop-3 mutant counterpart.  

If DOP-4 coordinates nematocin release with dopamine signaling, then it follows that dop-

4 males do not release nematocin at prod transition to hold them in the prodding state, 

thereby failing to move from the “high arousal” state-switching to the “low arousal” 

pausing and persistence in prodding.  Perhaps this response is analogous to the anxiolytic 

properties of other oxytocin homologs (Waldherr, M., et al. 2007; Yoshida, M,. et al., 

2009).  The lack of mating motivation of the dopamine-deficient animals, depicted by their 

significant increase in aborted mating attempts, could be consistent with this hypothesis, 

in which nematocin released in excess or at the wrong time during mating could “pause” 
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the mating behavior unproductively, thereby demotivating the male, or breaking up the 

coherence of the behavior pattern.   

 

Is this example of dopamine “goal oriented behavior” or “motivation/reward 

signaling?” 

 In vertebrate biology, two distinct paradigms for dopamine signaling exist for the 

two dopaminergic systems of the brain: the goal-oriented movement function of the 

substantia nigra dopaminergic circuit and the motivation and reward function of the ventral 

tegmental area dopaminergic circuit (Cooper, S., et al., 2017; Rizzi and Tan, 2017).  Both 

kinds of functionality have also been described in invertebrates (Guo et al., 2018; 

Lowenstein and Velazquez-Ulloa, 2018).  In previous studies, dopamine’s role in C. 

elegans male mating has been previously described with the “goal oriented behavior” 

paradigm, due it its antagonistic relationship with acetylcholine in carrying out 

intromission and ejaculation (Correa et al., 2012).   

 While these models are useful for discussion, they are not entirely distinct at the 

biological level. It has been suggested that these two functions are not distinguishable in 

dopaminergic systems of invertebrates (Zhang et al., 2018), based on studies of mating and 

courtship behavior in other model animals, specifically Drosophila melanogaster.  In this 

present study also it seems that both “goal oriented behavior” or “motivation/reward 

signaling” are equally applicable to describe the functionality of dopamine’s regulation of 

DVA and nematocin release.  On the one hand, dopamine can be seen as directing the 

prodding motor activity in a goal-oriented fashion. DVA itself is a cholinergic neuron (Liu 

et al., 2011), perhaps analogous to the dopamine/acetylcholine movement circuit of 
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mammalian brains (Rizzi and Tan, 2017) . On the other hand, dopamine can also be 

described as signaling a “reward” for finding the vulva, motivating the animal to exit its 

high arousal state and “pause” at the stimulus.  Understanding circuits like these more 

deeply may aid us in understanding the fundamental functionality of dopaminergic 

circuitry. 

 

The coupling of oxytocin and dopamine is conserved in complex reproductive behavior 

 Dopamine and oxytocin have been implicated in complex reproductive behavior 

time and again in mammals, from mate search and sexual exploration (Smith et al., 2015), 

to pair bonding and mating (Johnson and Young, 2015) to parental behavior and 

provisioning for offspring (Dulac et al., 2014). Here also I describe how the two 

overlapping systems cooperate to govern the mating behavior of an invertebrate nematode 

with 600 million years of evolutionary divergence from its mammalian counterparts.  

Nematocin and dopamine show anatomical convergence in their circuitry in the male.  

NTR-1 is expressed in rays R5B, R7B, and R9B, where the A Ray equivalents are 

dopaminergic (Garrison, J.G. et al., 2012: Serrano-Saiz, E., 2017b).  NTR-2 is present in 

the spicule motor neuron SPC, which has been shown to receive dopamine signals from 

the surrounding socket cells during copulation (LeBoeuf et al., 2014).   

 Why do dopamine and oxytocin share this deep evolutionary connection?  In C. 

elegans, dopamine is the regulator of nematocin release.  Disregulation of nematocin, the 

dopamine-deficient phenotype, is far worse for mating that having no nematocin at all.  

One might speculate that the dopaminergic system, a synthesized biogenic amine known 

to tightly control its levels of secretion, was coopted to ensure precision in the regulation 
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of nematocin, a translated peptide with that is perhaps less precise but more flexible in its 

secretion.  This fundamental combination may have been so successful that it was either 

conserved, or paralogously acquired time and again during metazoan evolution.  It would 

be interesting to see what dopamine’s role is, if any, in other species’ oxytocin mediated 

behavior, whether related or unrelated to reproduction.  

 

Broader implications of the work 

 In her recent book The Opposite of Hate, political scientist Sally Kohn examines 

one of the greatest atrocities of my living memory: the Rwandan genocide.  She is 

particularly interested in its aftermath and how the country healed from the massacre, in 

examples of “the opposite of hate.” It is easy to imagine atrocities like this committed by 

anonymous guerilla groups that come charging into villages and towns and commit the 

acts. What Kohn describes from her research of Rwanda, however, is that most of the 

murdering of the Tutsis was done by Hutu members of the same community, their 

neighbors with whom they cooperatively farmed the land, and in many cases, immediate 

family members of Hutu and Tutsi intermarriages, which was very common.  In the 

genocide’s aftermath, as Kohn tells it, it was not foreign aid and NGOs that rebuilt the 

country and its communities, but the very same people who picked up machetes and 

slaughtered their neighbors and kin. These same individuals took in the now orphans of 

their villages, helped rebuild Tutsi homes, and went on living with each other as they did 

before. How does this happen? How do we become one thing overnight, and then another? 

 In his book On Aggression, Konrad Lorenz describes “…the Bond… the way we 

distinguish friend from stranger…” as one of the strongest and most profound forces in 
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nature.  He hypothesizes that it is an evolutionary adaptation to overcome aggression in the 

most aggressive species so that they can mate and raise offspring.  The “Bond” is stronger 

than aggression, but is also inextricably intertwined with it.  It is the fundamental builder 

of societies, and simultaneously one of its greatest threats.  It is how we come together as 

families, as collectives, but also how we form in-groups and out-groups, how we identify 

“the Other,” and why we see “the Other” as a threat to our own tribe.  This is a story that 

plays out over and over in our history, and is even playing out in today’s politics and the 

attitudes surrounding different political parties, immigrants, and refugees in our country 

and others.  

 The “Bond” is not a natural force reserved for humans, or even just mammals. It 

can be found in many bird species (graylag geese) and fish species (convict cichlids). While 

it is unlikely that nematodes “bond,” nematodes do in fact have the same neuromodulators, 

oxytocin and dopamine, working together in analogous ways to regulate their complex 

reproductive behavior. Perhaps the difference in their mating behavior and our “bonding” 

is not a difference of kind but a difference of degree. It is my hope that studies of the nature 

that this thesis presents will shed light on how these circuits fundamentally work, aid us in 

better understanding of both how we form social attachments, and inform us about how 

those attachments are manipulated by our external environment.   
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EXPERIMENTAL PROCEDURES 
 
Nematode growth and molecular biology 

All strains were maintained at room temperature (22-23°C) on nematode growth 

medium (NGM) plates (51.3 mM NaCl, 1.7% agar, 0.25% peptone, 1 mM CaCl2, 12.9 µM 

cholesterol, 1 mM MgSO4, 25 mM KPO4, pH 6), seeded with E. coli OP50 bacteria as a 

food source. Wild-type animals were the Bristol strain N2 (Brenner, 1974). Standard 

cloning and molecular biology methods were used. Generation of extrachromosomal array 

transgenes was carried out using standard procedures (Mello and Fire, 1995). Generation 

of integrated transgenic lines was carried out using the protocols described in Mello and 

Fire as well. 

Mating assay 
 

The mating assay was adapted from the standard mating assay (Liu and Sternberg, 

1995). 5 cm petri plates were filled with 10ml of NGM and allowed to cool at 4°C. 72 

hours prior to the assay, the plates were placed at room temperature (22-24°C) unstacked, 

lid side down, and allowed to dry. 24 hours prior to the assay, plates were seeded with a 

small lawn OP50 E. coli, freshly grown to 1 O.D., and allowed to incubate at room 

temperature overnight.  

unc-64(e246) hermaphrodites were picked at the L4 stage 24 hours prior to the 

assay, moved to a plate with only other L4 unc-64(e246) hermaphrodites, and placed at 

15°C. These standard partners were used for each male genotype or condition being tested: 

~10 L3/L4males were placed on plates with only other L3/L4 males of their kind.  Test 

strains were then blinded and placed at 15°C. overnight.  

 



141 
 

Table 14: Caenorhabditis elegans strain list 

Strain Description Notes Figure(s)  
CB246 unc-64(e246) III Animals lacking the ortholog to 

syntaxin 1A. Defect in synaptic 
fusion. Extremely sluggish.  

All 
mating 
behavior 
experime
nts 

CX17123 kyIs713  [pnlp-
12::HisCl_2A_mCherry]  

Wild-type with integrated HisCl in 
DVA with mCherry expression 
reporter. Initially injected at 
30ng/ul.  

3.2, 3.4, 
3.7, 3.8, 
3.10 

CX8634 ntc-1(tm2385) X Nematocin-deficient animals. 
Male mating defect. backcrossed 
into lab N2 strain 6X.  

3.5, 3.6, 
3.9, 3.11, 
4.2, 4.3, 
4.4, 4.5, 
4.6, 4.11, 
4.13, 
4.14, 4.15    

CX17704 ntc-1(tm2385) X; kyIs713 Integrated HisCl in DVA with 
mCherry expression reporter 
crossed into the ntc-1 genetic 
background 

3.5, 3.6, 
3.9 

CX15799 nlp-12(ok335) I Deletion in the neuropeptide nlp-
12. Aldicarb resistant. Postural 
defect. Locomotive defect. 
Backcrossed with lab N2 6X.  

4.2, 4.11 

CX15929 nlp-12(ok335) I; ntc-
1(tm2385) X 

Nematocin-deficient and nlp-12 
double mutant. Aldicarb resistant. 
Postural defect. Locomotive 
defect. Male mating defect 

4.2, 4.11 

TQ296 trp-4(sy695) I Type-N TRP channel expressed in 
DVA and the dopaminergic 
neurons (ADE, CEPs, PDE, R5A, 
R7A, R9A). Postural defect. 
locomotive defect. mating defect.  

4.3, 4.12 

Need to 
deposit 

trp-4(sy695) I; ntc-
1(tm2385) X 

Type-N TRP channel and 
Nematocin-deficient double 
mutant. Postural defect. 
Locomotive defect. Male mating 
defect. 

4.3, 4.12 

CX11078 cat-2(e1112) II Nonsense mutation in a coding 
exon of tyrosine hydroxolase, rate 
limiting enzyme in dopamine 
synthesis.  Expressed in 
dopaminergic neurons. Postural 

4.4, 4.5, 
4.6, 4.7, 
4.8, 4.9, 
4.11, 
4.12, 
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defect. Locomotive defect 
(hyperactive). Basal slowing 
response defect. Crawl to swim 
transition defect. Severe male 
mating defect. Backcrossed 6X. 

4.15, 
4.16 

CX17708 cat-2(e1112) II; ntc-
1(tm2385) X 

Dopamine-deficient and 
nematocin-deficient animals. Male 
mating defect akin to nematocin-
deficient animals, less severe than 
dopamine-deficient animals. 

4.4, 4.5, 
4.6, 4.11, 
4.15 

CX17709 cat-2(e1112) II; ntc-
1(tm2385) X;  kyEx6239 
[pntc-1::ntc-1_SL2_GFP]  

Dopamine and nematocin double 
mutant with nematocin rescued on 
an extrachromosomal array under 
its endogeneous reporter. Severe 
male mating defect. Injected at 
20ng/ul.  

4.4, 4.5, 
4.6, 4.11, 
4.15 

Need to 
deposit 

cat-2(e1112) II;  kyIs713 Dopamine deficient animals 
expressing kyIs713 

4.7, 4.8, 
4.9, 4.12, 
4.16 

CX17707 unc-64(e246) III; lite-
1(ce314) X 

Blue light insensitive animals 
lacking ortholog to syntaxin 1A.  
Extreme sluggishness. Defect in 
synaptic fusion. 

5.1,  5.2, 
5.3, 5.4, 
5.5, 5.6, 
5.7, 5.8  

CX16553 lite-1(ce314) X; kyIs686 
[pnlp-12::GCaMP5A] 

Blue light insensitive animals 
expressing the genetically encoded 
GFP-based calcium indicator 
GCaMP5A in DVA. Initially 
injected at 30ng/ul 

5.1, 5.2, 
5.3, 5.5 

Need to 
deposit 

lite-1(ce314) X; ntc-
1(tm2385) X; kyIs686 

Nematocin deficient, blue light 
insensitive animals expressing 
kyIs686. Crossed from CX16553. 

5.1, 5.7 

CX17706 cat-2(e1112) II; lite-
1(ce314) X;  kyIs686 

Dopamine deficient, blue light 
insensitive animals expressing 
GCaMP5A in DVA. Crossed from 
CX16553. 

5.1, 5.4, 
5.6 

CX17712 lite-1(ce314) X; kyEx6238 
[pnlp-12::GFP] 

DVA labelled with GFP injected 
at 2ng/ul for calcium imaging 
control 

5.4, 5.8 

LX645 dop-1(vs101) X D1-like dopamine receptor, Gαs, 
tap habituation defective.  

6.1, 6.5 

LX702 dop-2(vs105) V D2-like dopamine receptor, G0/Gi, 
expressed in dopaminergic 
neurons ADE, PDE, CEPs, R5A, 
R7A, R9A, and other sites.  
Dopamine auto-regulation 
defective. 

6.1, 6.5 
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BZ873 dop-3(ok295) X D2-like dopamine receptor, G0/Gi, 
moderate male mating defect. 
Postural defect. 

6.1, 6.2, 
6.3, 6.4, 
6.5, 6.6 

LX703 dop-3(vs106) X D2-like dopamine receptor, G0/Gi, 
moderate male mating defect. 
Postural defect. Deletion of first 
exon. 

6.1, 6.5 

CX11751 dop-4(ok1321) X D1-like dopamine receptor, Gαs, 
moderate male mating defect. 

6.1, 6.2, 
6.3, 6.4, 
6.5, 6.7 

FG58 dop-4(tm1392) X D1-like dopamine receptor, Gαs, 
moderate male mating defect. 
Large deletion in 1st-3rd exons. 

6.1, 6.5 

CX17710 dop-3(ok295) dop-
4(ok1321) X 

DOP-3/DOP-4 double mutant.  
Severe mating defect. 

6.1, 6.2, 
6.3, 6.4, 
6.5 

CX11500 lgc-53(n4330) X Dopamine ligand gated chloride 
channel. Slight male mating 
defect.  

6.1, 6.5 

CX17625 kyEx6024 [pnlp-12:: 
SL2_mCherry] 

Rescue experiment control 
animals expressing an empty 
coding vector with nlp-12 
promoter and SL2_mCherry 
reporter. Injected at 5ng/ul 

6.2, 6.6, 
6.7 

Need to 
deposit 

dop-3(ok295) X;  
kyEx6024 

DOP-3 deficient rescue 
experiment control animals 
expressing an empty coding vector 
with nlp-12 promoter and 
SL2_mCherry reporter. Crossed 
from CX17625. 

6.2, 6.6 

CX17563 kyEx6180 [pnlp-12:: dop-
3(cDNA)_SL2_mCherry] 

Wild-type animals expressing the 
DVA specific dop-3 cDNA rescue 
construct with mCherry reporter. 
Injected at 5ng/ul. 

6.2, 6.6 

CX17562 dop-3(ok295) X;  
kyEx6180 

dop-3 animals expressing the 
DVA specific dop-3 cDNA rescue 
construct with mCherry reporter. 
Crossed from CX17563. 

6.2, 6.6 

CX17627 dop-4(ok1321) X; 
kyEx6024 

DOP-4 deficient Rescue 
experiment control animals 
expressing an empty coding vector 
with nlp-12 promoter and 
SL2_mCherry reporter. Crossed 
from CX17625. 

6.2, 6.7 

Need to 
deposit 

kyEx6184 [pnlp-12:: dop-
4(cDNA)_SL2_mCherry] 

Wild-type animals expressing the 
DVA specific dop-4 cDNA rescue 

6.2, 6.7 
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construct with mCherry reporter. 
Injected at 5ng/ul.  

CX17573 dop-4(ok1321) X; 
kyEx6184 

dop-4 animals expressing the 
DVA specific dop-4 cDNA rescue 
construct with mCherry reporter. 
Crossed from NEED TO 
DEPOSIT 

6.2, 6.7 
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Prior to the assay, unc-64(e246) hermaphrodites were picked onto the assay plates, 

one animal per plate, and allowed to settle at room temperature for 30-45 minutes.  

Individual test males were then picked onto the assay plates with the unc-64(e246) mates, 

and recorded for 350 seconds at 10 fps at 10X magnification under bright field illumination 

on the Arena Imaging Microscope (Larsch et al., 2013). Recording began right before the 

male made first contact with the hermaphrodite. Once complete, males were removed from 

the assay plate, and it was annotated and stored at room temperature.  48 hours later, the 

plates were examined for male progeny to confirm successful mating behavior observed in 

the video recordings. 

Five animals for each test strain were assayed at a time, so each data set of 20 

animals consists of four distinct assay days.  One test strain per assay day was always a 

wild-type control.  If the wild-type animals did not mate at an efficiency of 60% (3/5 

successful), the results of the day were discarded. 

 

Ethograms and mating analysis 

 Mating videos were cued up to frame where males make first contact with the 

hermaphrodite, and trimmed to 3000 frames, or 300 seconds, in ImageJ 

(https://imagej.nih.gov/ij/). Videos were then tracked manually in a Graphical User 

Interface (GUI) customized in MATLAB (Mathworks®). Frames were assigned one of the 

ten sub-behaviors of mating: contact, backing, good turn, sloppy turn, missed turn, vulva 

prod, slip, non-vulva prod, leaving, and sperm transfer.  Catagories were later simplified 

into “vulva search” (backing, all turning), “prodding” (at vulva and non-vulva locations), 

and “slipping.” Sub-behaviors “Contact,” “Leaving,” and “Sperm Transfer” were deemed 

https://imagej.nih.gov/ij/
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to be categorical (yes/no) measurements.  Genotypes/conditions were unblinded post-

tracking.  

Effective sample size was determined based on a power calculation for the χ2-test. 

A sample size of 20 with an effect size of 0.8 (wild-type mating % success) to a significance 

of 0.05 was calculated to accept the alternative hypothesis with 95% accuracy. 

(https://www.anzmtg.org/stats/PowerCalculator/PowerChiSquare). Mating success p 

values were then calculated using a Fisher’s Exact test, with a False Discovery Rate 

multiple comparison correction. 

Markov modeling was done with a customized script in MATLAB. State durations 

are calculated based on the fraction time of all the animals in a given genotype/condition 

spend engaged in that specific sub-behavior.  A one second time unit was chosen for 

determining percent likelihood of behavioral state transitions because it is an appropriate 

time vector for mating behavior. Probabilities were calculated over 10 frames with the 

following general equation: 

P1->2 over n frames  = P1->2*(1 + P1->1 + P1->1
2  + … + P1->1

n-1) 

This was calculated for the 10 transition probabilities: vulva search to vulva search, vulva 

search to prodding, vulva search to slipping, prodding to vulva search, prodding to 

prodding, prodding to sperm transfer, prodding to slipping, slipping to vulva search, 

slipping to prodding, and slipping to slipping.   

 In many ethomic studies of C. elegans, behaviors can be assumed to be independent 

of one another, and multiple repetitions can be considered as data sets per animal.  For 

example, a pulse of odor may elicit a number of reversals from a worm, as does a similar 

pulse a minute later.  These odor responses then may be pooled into a data set for the given 

https://www.anzmtg.org/stats/PowerCalculator/PowerChiSquare
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animal, with a mean, median, standard deviation and error, and so on.  In the instance of 

mating, however, the investigator cannot assume independence of the sub-behaviors. The 

behavioral “unit” is the entire mating event, and the sub-behaviors (vulva search, prodding, 

slipping) are quantitatively descriptive components of the more complex unit of behavior.  

This means that, in order to make meaningful statistical comparisons between genotypes 

and conditions, a different approach is needed to statistically quantify the variability in the 

data.   

 To these ends, I performed a bootstrapping analysis on each of my 20-member data 

sets. I allowed the program to randomly generate a new set of 20 mating traces from my 

original, allowing for the program to select traces multiple times (resampling).  I then 

performed the Markov modelling on the randomized set, generating my ten transition 

probability values (vulva search to prodding, etc.) for the new, randomized set of 20 mating 

traces.  I then repeated this 1,000 times, generating a new, randomized set of 20 mating 

traces with each loop.  This gave me a normal distribution with a mean and standard 

deviation representative of the variability in my data set, which I could then compare to 

other data sets with statistical tests.  To ensure the mean and standard deviations the 

program made sense given my experimental results, I compared them to the transition 

probability values calculated with the original 20 mating traces.  In every case, the 

calculated experimental value fell well within one standard deviation of the bootstrapped 

mean, even in instances where the standard deviation was relatively small, as did newly 

calculated means and standard deviations when the bootstrapping analysis was repeated.  

Below is a flow chart of how the bootstrapping analysis was conducted for the ethomic 

data sets (Figure EP1). 
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Figure E.P.1: Flow chart for steps taken to build Markov model of mating behavioral 

dynamics. 

 
When comparing data sets, I wanted to not only address statistical significance, but 

also relative effect size.  A small change in a transition probability, say from adding 10 

mM of histamine to the assay plate, may be statistically significant from the control set 

from that day, but is not meaningful for my inquiry.  The means and standard deviations 

calculated from the bootstrapping analysis allow me to calculate statistical significance, 

but do not address effect size.  

To determine a meaningful effect size, I looked at the variability in the control data 

from all of my experimental data sets for the thesis.  I had five sets of wild-type traces that 

I assayed in tandem with my experiments as controls.  I compared the means and standard 

deviations of the ten transition probabilities for these five data sets.  There was more 

variability between experiments than there was within experiments, and these means fell  
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Table 15: Means for transition frequencies for wild-type animals over 5 experiments.  
 

Index transition 
probability 

mean 
#1 

mean 
#2 

mean 
#3 

mean 
#4 

mean 
#5 

adj. 
mean 

s.d. 

1 vulva search to 
vulva search 

95.07 92.94 90.19 94.18 91.36 92.75 2.00 

2 vulva search to 
prod 

2.00 6.73 4.70 5.47 5.51 5.08 1.37 

3 vulva search to 
slip 

1.73 0.34 0.30 0.35 3.13 1.17 1.25 

4 prod to vulva 
search 

0.20 0.00 0.00 0.00 0.00 0.04 0.09 

5 prod to prod 95.07 92.17 94.37 91.89 93.05 93.31 1.38 

6 prod to slip 4.04 7.01 2.64 7.17 5.37 5.24 1.94 

7 prod to sperm 
transfer 

0.69 0.78 1.37 1.00 0.96 0.96 0.26 

8 slip to vulva 
search 

1.70 1.09 1.14 0.54 0.00 0.89 0.65 

9 slip to prod 17.29 16.62 13.15 13.88 15.10 15.21 1.76 

10 slip to slip 81.01 92.29 85.46 85.71 84.05 85.70 4.13 

 
Table 16: Means for transition frequencies for nematocin-deficient animals over 4 

experiments.  

 
Index transition probability mean 

#1 
mean 

#2 
mean 

#3 
mean 

#4 
adj. 

mean 
s.d. 

1 vulva search to vulva 
search 

93.36 94.84 93.22 93.92 93.99 0.66 

2 vulva search to prod 4.07 2.65 3.13 5.12 3.74 1.09 
3 vulva search to slip 1.29 1.52 1.08 0.33 1.06 0.52 
4 prod to vulva search 0.73 0.40 0.64 0.79 0.64 0.17 
5 prod to prod 96.95 95.33 96.83 96.01 96.28 0.76 
6 prod to slip 2.04 3.91 2.03 2.94 2.73 0.89 
7 prod to sperm transfer 0.27 0.36 0.51 0.26 0.35 0.12 
8 slip to vulva serarch 0.59 0.78 0.47 0.89 0.68 0.19 
9 slip to prod 11.33 9.46 11.01 9.52 10.33 0.98 
10 slip to slip 87.99 89.76 88.85 89.59 89.05 0.81 
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well outside the distributions of one another.  Thus, I decided to take one of the more 

conservative approaches to my data analysis, and say by definition that I was interested in 

effect sizes LARGER than the experiment-to-experiment variability of my control data. I 

calculated means and standard deviations of the ten transition frequencies for the 

distribution of these five wild-type data sets (Table 15), and used those values to calculate 

p values and determine statistical significance for my data. 

The same was done for the nematocin-deficient male control data sets, of which I 

had four sets and not five.  In instances where it was appropriate to calculate the p value 

from the nematocin-deficient data (e.g. the ntc-1 HisCl silencing experiments), I used this 

adjusted mean and standard deviation Table 16). 

Table 17: Means for transition frequencies for dopamine-deficient animals.  
 

Index transition probability mean 
#1 

mean 
#2 

mean 
#3 

mean 
#4 

adj. 
mean 

s.d. 

1 vulva search to vulva 
search 

92.09 90.33 90.84 92.62 91.47 1.07 

2 vulva search to prod 6.04 4.07 2.70 1.07 3.47 2.11 
3 vulva search to slip 0.86 3.93 5.41 4.40 3.65 1.96 
4 prod to vulva search 0.05 0.00 0.08 0.10 0.058 0.043 
5 prod to prod 93.65 93.85 95.73 97.09 95.08 1.64 
6 prod to slip 6.20 6.02 4.04 2.62 4.72 1.71 
7 prod to sperm transfer 0.09 0.13 0.15 0.20 0.14 0.05 
8 slip to vulva serarch 0.33 0.49 0.42 0.97 0.55 0.29 
9 slip to prod 12.65 2.12 7.5 4.23 6.63 4.59 
10 slip to slip 87.57 97.18 91.56 93.44 92.44 4.00 

 

Finally, for the dopamine-deficient, HisCl silencing experiment, I needed a 

dopamine-deficient effect size.  I only had two data sets of dopamine-deficient mating 

traces from my entire data repertoire, so I used the cat-2, histamine alone and cat-2, 

transgene alone data to supplement this data distribution.  The approach felt justified for 
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two reasons. One, I was only performing this analysis on data from the HisCl silencing 

experiment, and two, I was also, by definition, looking for effect sizes larger than the effect 

of either reagent alone. This adjusted mean and standard deviation is presented in Table 

15.  Figure EP2 shows dot plots for the distributions of means for wild-type, nematocin-

deficient, and dopamine-deficient control sets.     

 

 
EP2: Distribution of all transition probabilities for experiment-to-experiment 

variability of wild-type, nematocin-deficient, and dopamine-deficient males. 

Horizontal lines indicate the mean of the distributions, vertical lines indicate the standard 

deviation. circles are calculated mean values from an experimental day for wild-type 

males, squares are calculated mean values from an experimental day for nematocin-

deficient (ntc-1) males, and triangles are calculated mean values from an experimental day 

for dopamine-deficient (cat-2) males. 
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Histamine-gated chloride channel silencing of DVA 

1 M histamine-dihydrochloride (Sigma-Aldrich) stock was made with M9 buffer 

(0.022 M KH2PO4, 0.042 M Na2HPO4, 0.086 M NaCl, 1m M MgSO4), sterile filtered, and 

diluted into NGM agar that had cooled to 55°C at 10mM. Half of the NGM agar was 

reserved to pour control plates without histamine. All plates were stored at 4°C and used 

within one month.   

In addition to the mating assay plates, “incubation plates” both with and without 10 

mM histamine were seeded with 50 μL of 1 OD OP50 24 hours prior to the assay. 

Additional plates without histamine were seeded in the same manner at this time as 

“recovery plates.” Males with and without an integrated DVA::HisCl_2A_mCherry 

transgene, blinded from the night before, were placed on the incubation plates, half the 

animals in the histamine free condition and half in the 10 mM histamine condition for 2 

hours before beginning mating.  Mating assays were conducted on plates with conditions 

consistent with the males’ incubation plate.  

 Males on histamine that did not mate were placed on a recovery plate after being 

assayed and incubated at room temperature for two hours.  These males were then re-

assayed off histamine with new hermaphrodites, and their behavior was recorded.  

 

DVA activity imaging protocol 

 Mating assays were prepared as previously described, selecting L4 males for strong 

expression of the integrated DVA::GCaMP5A transgene in the lite-1(ce314) genetic 

background and incubating them at 15°C 24 hours prior to the assay.  The lawns of mating 

assay plates were cut out of the 5 cm plates and placed in customized mating chips made 
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with a 3D Printer (MakerBot Replicator Plus). When a coverslip is placed over the chip, a 

chamber is created on the surface of the NGM agar that stabilizes the environment for the 

mating animal and allows it to be imaged with epi-flourescent microscopy.  

 3500 frame movies of mating attempts were taken with the AIM setup (Larsch et 

al., 2013) under 488 nm fluorescent illumination with a 10X objective and at an exposure 

time of 15 ms/frame to increase the light collected. Light was pulsed at the frame rate to 

reduce photosensitivity and phototoxicity. 10 videos were recorded of 10 separate mating 

attempts of different animals for each phenotype.  Control animals expressing GFP in DVA 

at a low level were also assayed. 

 

DVA calcium signal tracking and analysis 

 Calcium imaging videos were first processed and behaviorally tracked as 

previously described. The videos were then uploaded into a second customized MATLAB 

GUI, and the DVA neuron was hand-tracked for the video, selected by the user in each 

frame. The program then finds the 9 brightest pixels in the frame, segments them, and 

averages their fluorescence to calculate a raw signal.  The pixels in the selected area that 

surround the segmented neuron are also averaged and recorded as a local background. In 

frames where the neuron was obscured or not visible, no region was selected.  

 ΔF/Fbackground was calculated by subtracting the calculated local background at any 

given point from the calculated signal, and then dividing the difference by that same local 

background.  Traces were then normalized onto a 0 to 1 scale by subtracting the 5th 

percentile of the data as a baseline and dividing by the 98th percentile to generate a ΔF/Fmax. 

Event triggered analysis was also conducted in MATLAB with custom scripts. Traces were 
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smoothed with the “smoothdata” function in MATLAB. F0 was defined as the ΔF/Fmax at 

the onset of the event being analyzed, e.g. sperm transfer, and ΔF/F0 was calculated as 

(ΔF/Fmax – F0)/F0.  For prod to sperm transfer, the control data set was generated by 

fragmenting the ethograms into 300 ten-frame sections and randomly reassembling. The 

calcium imaging analysis was then conducted on the 10, randomized ethogram traces, 

triggering the event at random points in the calcium trace instead of moment coordinated 

with the behavioral event.  The number of “event-triggered” traces was then pared down 

to equal the number of data “event-triggered” traces, so the statistics would be on 

equivalent data sets.  All values that did not correspond to designated sub-behavior were 

assigned “nan.”  Graph window were determined by the length of time before 25% of the 

traces “dropped out,” meaning that animal began engaging in another sub-behavior other 

than the designated one. Box and whiskers graphs were generated and analyzed in Prism® 

statistical software (https://www.graphpad.com/scientific-software/prism/).   

  

  

https://www.graphpad.com/scientific-software/prism/
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