6 research outputs found

    Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA

    Get PDF
    Background: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm ( WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0maize events carrying rootwormSec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25in diet bioassays. Conclusion: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25, suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. Includes supplemental materials

    Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) and Neotropical brown stink bug (\u3ci\u3eEuschistus heros\u3c/i\u3e)

    Get PDF
    RNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality. Furthermore, RNAi can directly affect individuals that consume dsRNA or the effect may be transferred to the next generation. Our previous work described the potential use of genes involved in embryonic development as a parental RNAi technology for the control of WCR. In this study, we describe the use of chromatin-remodeling ATPases as target genes to achieve parental gene silencing in two insect pests, a coleopteran, WCR, and a hemipteran, the Neotropical brown stink bug, Euschistus heros Fabricius (Hemiptera: Pentatomidae). Our results show that dsRNA targeting chromatin-remodeling ATPase transcripts, brahma, mi-2, and iswi strongly reduced the fecundity of the exposed females in both insect species. Additionally, knockdown of chd1 reduced the fecundity of E. heros

    Parental RNA interference of genes involved in embryonic development of the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e LeConte

    Get PDF
    RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control

    Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA

    Get PDF
    Background: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm ( WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0maize events carrying rootwormSec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25in diet bioassays. Conclusion: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25, suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. Includes supplemental materials

    Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) and Neotropical brown stink bug (\u3ci\u3eEuschistus heros\u3c/i\u3e)

    Get PDF
    RNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality. Furthermore, RNAi can directly affect individuals that consume dsRNA or the effect may be transferred to the next generation. Our previous work described the potential use of genes involved in embryonic development as a parental RNAi technology for the control of WCR. In this study, we describe the use of chromatin-remodeling ATPases as target genes to achieve parental gene silencing in two insect pests, a coleopteran, WCR, and a hemipteran, the Neotropical brown stink bug, Euschistus heros Fabricius (Hemiptera: Pentatomidae). Our results show that dsRNA targeting chromatin-remodeling ATPase transcripts, brahma, mi-2, and iswi strongly reduced the fecundity of the exposed females in both insect species. Additionally, knockdown of chd1 reduced the fecundity of E. heros
    corecore