52 research outputs found

    PARENTAL RNAI SUPPRESSION OF KRUPPEL GENE TO CONTROL HEMIPTERAN PESTS

    Get PDF
    This disclosure concerns nucleic acid molecules and methods of use thereof for control of hemipteran pests through RNA interference - mediated inhibition of target coding and transcribed non - coding sequences in hemipteran pests. The disclosure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby

    PARENTAL RNAI SUPPRESSION OF HUNCHBACK GENE TO CONTROL HEMIPTERAN PESTS

    Get PDF
    This disclosure concerns nucleic acid molecules and methods of use thereof for control of hemipteran pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in hemipteran pests. The dis closure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby

    PARENTAL RNAI SUPPRESSION OF HUNCHBACK GENE TO CONTROL HEMIPTERAN PESTS

    Get PDF
    This disclosure concerns nucleic acid molecules and methods of use thereof for control of hemipteran pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in hemipteran pests. The dis closure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby

    PARENTAL RNAI SUPPRESSION OF CHROMATIN REMODELING GENES TO CONTROL COLEOPTERAN PESTS

    Get PDF
    This disclosure concerns nucleic acid molecules and meth ods of use thereof for control of hemipteran pests through RNA interference - mediated inhibition of target coding and transcribed non - coding sequences in hemipteran pests. The disclosure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby

    Gene silencing in \u3ci\u3eTribolium castaneum\u3c/i\u3e as a tool for the targeted identification of candidate RNAi targets in crop pests

    Get PDF
    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests

    Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA

    Get PDF
    Background: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm ( WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0maize events carrying rootwormSec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25in diet bioassays. Conclusion: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25, suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. Includes supplemental materials

    Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e) and Neotropical brown stink bug (\u3ci\u3eEuschistus heros\u3c/i\u3e)

    Get PDF
    RNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality. Furthermore, RNAi can directly affect individuals that consume dsRNA or the effect may be transferred to the next generation. Our previous work described the potential use of genes involved in embryonic development as a parental RNAi technology for the control of WCR. In this study, we describe the use of chromatin-remodeling ATPases as target genes to achieve parental gene silencing in two insect pests, a coleopteran, WCR, and a hemipteran, the Neotropical brown stink bug, Euschistus heros Fabricius (Hemiptera: Pentatomidae). Our results show that dsRNA targeting chromatin-remodeling ATPase transcripts, brahma, mi-2, and iswi strongly reduced the fecundity of the exposed females in both insect species. Additionally, knockdown of chd1 reduced the fecundity of E. heros

    RNAi targeting of rootworm \u3ci\u3eTroponin I\u3c/i\u3e transcripts confers root protection in maize

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize
    • …
    corecore