55 research outputs found

    Pleiotropic phenotypes of a Yersinia enterocolitica flhD mutant include reduced lethality in a chicken embryo model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Yersinia enterocolitica </it>flagellar master regulator FlhD/FlhC affects the expression levels of non-flagellar genes, including 21 genes that are involved in central metabolism. The sigma factor of the flagellar system, FliA, has a negative effect on the expression levels of seven plasmid-encoded virulence genes in addition to its positive effect on the expression levels of eight of the flagellar operons. This study investigates the phenotypes of <it>flhD </it>and <it>fliA </it>mutants that result from the complex gene regulation.</p> <p>Results</p> <p>Phenotypes relating to central metabolism were investigated with Phenotype MicroArrays. Compared to the wild-type strain, isogenic <it>flhD </it>and <it>fliA </it>mutants exhibited increased growth on purines and reduced growth on N-acetyl-D-glucosamine and D-mannose, when used as a sole carbon source. Both mutants grew more poorly on pyrimidines and L-histidine as sole nitrogen source. Several intermediates of the tricarboxylic acid and the urea cycle, as well as several dipeptides, provided differential growth conditions for the two mutants. Gene expression was determined for selected genes and correlated with the observed phenotypes. Phenotypes relating to virulence were determined with the chicken embryo lethality assay. The assay that was previously established for <it>Escherichia coli </it>strains was modified for <it>Y. enterocolitica</it>. The <it>flhD </it>mutant caused reduced chicken embryo lethality when compared to wild-type bacteria. In contrast, the <it>fliA </it>mutant caused wild-type lethality. This indicates that the virulence phenotype of the <it>flhD </it>mutant might be due to genes that are regulated by FlhD/FlhC but not FliA, such as those that encode the flagellar type III secretion system.</p> <p>Conclusion</p> <p>Phenotypes of <it>flhD </it>and <it>fliA </it>mutants are related to central metabolism and virulence and correlate with gene regulation.</p

    Remotely Sensed Canopy Nitrogen Correlates With Nitrous Oxide Emissions in a Lowland Tropical Rainforest

    Get PDF
    Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote‐sensing image spectroscopy, correlates with patterns of soil N2O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40–70 individual trees) in which average remotely‐sensed canopy N fell above or below the regional mean. The plots were located on a single minimally‐dissected terrace (km2) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three‐fold higher total mean N2O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two‐fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia‐oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant‐available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely‐sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2O emissions in heterogeneous landscapes

    Relating gene expression data on two-component systems to functional annotations in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining physiological insights from microarray experiments requires computational techniques that relate gene expression data to functional information. Traditionally, this has been done in two consecutive steps. The first step identifies important genes through clustering or statistical techniques, while the second step assigns biological functions to the identified groups. Recently, techniques have been developed that identify such relationships in a single step.</p> <p>Results</p> <p>We have developed an algorithm that relates patterns of gene expression in a set of microarray experiments to functional groups in one step. Our only assumption is that patterns co-occur frequently. The effectiveness of the algorithm is demonstrated as part of a study of regulation by two-component systems in <it>Escherichia coli</it>. The significance of the relationships between expression data and functional annotations is evaluated based on density histograms that are constructed using product similarity among expression vectors. We present a biological analysis of three of the resulting functional groups of proteins, develop hypotheses for further biological studies, and test one of these hypotheses experimentally. A comparison with other algorithms and a different data set is presented.</p> <p>Conclusion</p> <p>Our new algorithm is able to find interesting and biologically meaningful relationships, not found by other algorithms, in previously analyzed data sets. Scaling of the algorithm to large data sets can be achieved based on a theoretical model.</p

    Using systems science to understand the determinants of inequities in healthy eating

    Get PDF
    Introduction: Systems thinking has emerged in recent years as a promising approach to understanding and acting on the prevention and amelioration of non-communicable disease. However, the evidence on inequities in non-communicable diseases and their risks factors, particularly diet, has not been examined from a systems perspective. We report on an approach to developing a system oriented policy actor perspective on the multiple causes of inequities in healthy eating. Methods: Collaborative conceptual modelling workshops were held in 2015 with an expert group of representatives from government, non-government health organisations and academia in Australia. The expert group built a systems model using a system dynamics theoretical perspective. The model developed from individual mind maps to pair blended maps, before being finalised as a causal loop diagram. Results: The work of the expert stakeholders generated a comprehensive causal loop diagram of the determinants of inequity in healthy eating (the HE2Diagram). This complex dynamic system has seven sub-systems: (1) food supply and environment; (2) transport; (3) housing and the built environment; (4) employment; (5) social protection; (6) health literacy; and (7) food preferences. Discussion: The HE2causal loop diagram illustrates the complexity of determinants of inequities in healthy eating. This approach, both the process of construction and the final visualisation, can provide the basis for planning the prevention and amelioration of inequities in healthy eating that engages with multiple levels of causes and existing policies and programs

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
    corecore