7 research outputs found

    Janus Type Monolayers of S-MoSiN<sub>2</sub> Family and Van Der Waals Heterostructures with Graphene: DFT-Based Study

    No full text
    Novel representative 2D materials of the Janus type family X-M-ZN2 are studied. These materials are hybrids of a transition metal dichalcogenide and a material from the MoSi2N4 family, and they were constructed and optimized from the MoSi2N4 monolayer by the substitution of SiN2 group on one side by chalcogen atoms (sulfur, selenium, or tellurium), and possibly replacing molybdenum (Mo) to tungsten (W) and/or silicon (Si) to germanium (Ge). The stability of novel materials is evaluated by calculating phonon spectra and binding energies. Mechanical, electronic, and optical characteristics are calculated by methods based on the density functional theory. All considered 2D materials are semiconductors with a substantial bandgap (>1 eV). The mirror symmetry breaking is the cause of a significant built-in electric field and intrinsic dipole moment. The spin–orbit coupling (SOC) is estimated by calculations of SOC polarized bandstructures for four most stable X-M-ZN2 structures. The possible van der Waals heterostructures of considered Janus type monolayers with graphene are constructed and optimized. It is demonstrated that monolayers can serve as outer plates in conducting layers (with graphene) for shielding a constant external electric field

    Modelling of Electron and Thermal Transport in Quasi-Fractal Carbon Nitride Nanoribbons

    No full text
    In this work, using calculations based on the density functional theory, molecular dynamics, non-equilibrium Green functions method, and Monte Carlo simulation, we study electronic and phonon transport in a device based on quasi-fractal carbon nitride nanoribbons with Sierpinski triangle blocks. Modifications of electronic and thermal conductance with increase in generation g of quasi-fractal segments are estimated. Introducing energetic disorder, we study hopping electron transport in the quasi-fractal nanoribbons by Monte Carlo simulation of a biased random walk with generalized Miller&ndash;Abrahams transfer rates. Calculated time dependencies of the mean square displacement bear evidence of transient anomalous diffusion. Variations of anomalous drift-diffusion parameters with localization radius, temperature, electric field intensity, and energy disorder level are estimated. The hopping in quasi-fractal nanoribbons can serve as an explicit physical implementation of the generalized comb model
    corecore