54 research outputs found

    A derivation of two quadratic transformations contiguous to that of Gauss via a differential equation approach

    Get PDF
    The purpose of this note is to provide an alternative proof of two quadratic transformation formulas contiguous to that of Gauss using a differential equation approach

    Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans

    Get PDF
    BACKGROUND: The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs), but the GPCR(s) critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR) exist in C. elegans. RESULTS: Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR) predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs) and corazonin receptors of arthropods. CONCLUSION: This is the first report of a GnRHR orthologue in C. elegans, which shares significant similarity with insect AKHRs. In vertebrates, GnRHRs are central components of the reproductive endocrine system, and the identification of a GnRHR orthologue in C. elegans suggests the potential use of C. elegans as a model system to study reproductive endocrinology

    The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes

    Get PDF
    Introduction: The physiological signals that direct the division and differentiation of the zygote to form a blastocyst, and subsequent embryonic stem cell division and differentiation during early embryogenesis, are unknown. Although a number of growth factors, including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst, it is not known whether these growth factors directly signal human embryonic stem cells (hESCs). Methods: Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB’s; akin to blastulation) and neuroectodermal rosettes (akin to neurulation). Results: We found that hCG promotes the division of hESCs and their differentiation into EB’s and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation, an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A, and treatment of hESC colonies with P4 induces neurulation, as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB’s and rosettes. Conclusions: Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo

    Detection of visual field defects using Eye Movement Pediatric Perimetry in children with intracranial lesions:feasibility and applicability

    Get PDF
    The study aimed at evaluating the feasibility of Eye Movement Pediatric Perimetry (EMPP) among children in detecting Visual Field Defects (VFDs) associated with Intracranial Lesions (IL). Healthy controls (n = 35) and patients diagnosed with IL (n = 19) underwent a comprehensive clinical evaluation followed by a Goldmann Visual Field (GVF) and a customised EMPP protocol. During EMPP, all the participants were encouraged to fixate on a central target and initiate Saccadic Eye Movement (SEM) responses towards randomly appearing peripheral stimuli. The SEM responses were recorded using an eye-tracking device and further inspected to calculate Performance Scores (PS), Saccadic Reaction Times (SRTs), and an EMPP Index (EMPI). The mean age (years) of the controls and cases were 7.3 (SD: 1.5) and 9.4 (SD: 2.4) respectively. Among the controls, the older children (≥7 years) showed statistically significantly faster SRTs (p = 0.008) compared to the younger group. The binocular EMPP measurements compared between the controls and the cases revealed no statistically significant differences in PS (p = 0.34) and SRT (p = 0.51). EMPP failed in 4 children because of data loss or unacceptably poor PS whereas GVF failed in 7 children due to unreliable subjective responses. Of the 16 reports, with regard to the central 30-degree VF, 63% of the outputs obtained from both methods were comparable. EMPP is a reliable method to estimate and characterise the central 30-degree VF in greater detail in children with IL. EMPP can supplement the conventional methods, especially in those children who fail to complete a long duration GVF test

    Comparative expression profiling and sequence characterization of ATP1A1 gene associated with heat tolerance in tropically adapted cattle

    Get PDF
    Climate change is an imminent threat to livestock production. One adaptation strategy is selection for heat tolerance. While it is established that the ATP1A1 gene and its product play an important role in the response to many stressors, there has been no attempt to characterize the sequence or to perform expression profiling of the gene in production animals. We undertook a field experiment to compare the expression profiles of ATP1A1 in heat-tolerant Vechur and Kasaragod cattle (Bos taurus indicus) with the profile of a heat-susceptible crossbreed (B. t. taurus × B. t. indicus). The cattle were exposed to heat stress while on pasture in the hot summer season. The environmental stress was quantified using the temperature humidity index (THI), while the heat tolerance of each breed was assessed using a heat tolerance coefficient (HTC). The ATP1A1 mRNA of Vechur cattle was amplified from cDNA and sequenced. The HTC varied significantly between the breeds and with time-of-day (p < 0.01). The breed–time-of-day interaction was also significant (p < 0.01). The relative expression of ATP1A1 differed between heat-tolerant and heat-susceptible breeds (p = 0.02). The expression of ATP1A1 at 08:00, 10:00 and 12:00, and the breed–time-of-day interaction, were not significant. The nucleotide sequence of Vechur ATP1A1 showed 99% homology with the B. t. taurus sequence. The protein sequence showed 98% homology with B. t. taurus cattle and with B. grunniens (yak) and 97.7% homology with Ovis aries (sheep). A molecular clock analysis revealed evidence of divergent adaptive evolution of the ATP1A1 gene favoring climate resilience in Vechur cattle. These findings further our knowledge of the relationship between the ATP1A1 gene and heat tolerance in phenotypically incongruent animals. We propose that ATP1A1 could be used in marker assisted selection (MAS) for heat tolerance

    Saccadic reaction time in mirror image sectors across horizontal meridian in eye movement perimetry

    Get PDF
    In eye movement perimetry (EMP), the saccadic reaction time (SRT) to ‘seen’ visual stimuli are delayed in glaucoma. Evaluating SRT behaviour in hemi-field sectors could refine its clinical implication. The development phase included 60 controls retrospectively and for the test cohort in evaluation phase, another 30 healthy subjects and 30 glaucoma patients were recruited prospectively. The SRTs were used to calculate the normative limits within 5 predefined hemi-field sectors. Scores were assigned to probabilities for SRT at the level of 5%, 2.5% 1% and 0.5%. Per sector pair, a probability score limit (PSL) was calculated at each of the four levels and were compared with the scores obtained from the test cohort. The classification accuracy ‘normal versus abnormal’ was assessed for PSL in EMP and compared with glaucoma hemi-field test in standard automated perimetry. We found no statistically significant differences in SRTs between the mirror sectors in healthy subjects. The PSL at 2.5% had moderate classification accuracy with a specificity of 77% and sensitivity 70%. This could be suggestive of an SRT delay in the overall visual field in glaucoma

    Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism?

    Get PDF
    Introduction: Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. Methods: Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. Results: Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. Conclusions: Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed

    Conjugated linoleic acid administration induces amnesia in male sprague dawley rats and exacerbates recovery from functional deficits induced by a controlled cortical impact injury

    Get PDF
    Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA) are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T) biosynthesis, which is known to diminish traumatic brain injury (TBI)-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5–6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17)) or Sham injury (craniectomy alone; n = 12) and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16) or saline (n = 13) every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4) by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068), T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p \u3c 0.05), 11-deoxycorticosterone (11-DOC) by 37.5% (from 289.3 ± 42.0 ng/mL to 180.7 ± 3.3 ng/mL), and corticosterone by 50.8% (from 195.1 ± 22.4 ng/mL to 95.9 ± 2.2 ng/mL), by post-surgery day 1. CCI injury induced similar declines in P4, T, 11-DOC and corticosterone (58.9%, 74.6%, 39.4% and 24.6%, respectively) by post-surgery day 1. These results suggest that both Sham surgery and CCI injury induce hypogonadism and hypoadrenalism in adult male rats. CLA treatment did not reverse hypogonadism in Sham (P4: 2.5 ± 1.0 ng/mL; T: 0.9 ± 0.2 ng/mL) or CCI-injured (P4: 2.2 ± 0.9 ng/mL; T: 1.0 ± 0.2 ng/mL, p \u3e 0.05) animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL) and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL) animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s) compared to saline treated Sham animals (8.8 ± 1.7 s). In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s) compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p \u3c 0.05). These results indicate that chronic treatment of CLA at a dose of 25 mg/kg body weight in adult male rats over 1-month 1) does not reverse craniectomy- and craniectomy + CCI-induced hypogonadism, but does reverse craniectomy- and craniectomy + CCI-induced hypoadrenalism, 2) is detrimental to medium- and long-term spatial learning and memory in craniectomized uninjured rats, 3) limits cognitive recovery following a moderate-severe CCI injury, and 4) does not alter body weight

    Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density

    Get PDF
    Rationale: In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). Objective: To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. Methods: Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F&gt;F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category. Results: In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (&gt;47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI. Conclusion: TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves
    corecore