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Abstract

The purpose of this note is to provide an alternative proof of two
quadratic transformation formulas contiguous to that of Gauss using a
differential equation approach.
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1. Introduction

The quadratic transformation for the hypergeometric function 2F1(a, b; c;x)
we consider here is the one originally obtained by Gauss in the form (see, for
example, [1, p. 128])

(1 + x)−2a2F1

[
a, b
2b

;
4x

(1 + x)2

]
= 2F1

[
a, a− b+ 1

2

b+ 1
2

;x2
]

(1.1)

valid when |x| < 1 and |4x/(1 + x)2| < 1 and provided 2b is neither zero nor
a negative integer. Bailey [2] re-derived this result by employing the classical
Watson summation theorem for the 3F2 series. In the standard text of Rainville
[5, p. 63], the transformation (1.1) was derived using the differential equation
satisfied by 2F1.

In 2001, Rathie and Kim [6] established two transformation formulas con-
tiguous to (1.1) with the help of a contiguous version of Watson’s summation
theorem due to Lavoie et al. These are given in the following theorem.

Theorem 1. If |x| < 1 and |4x/(1 + x)2| < 1 then

(1 + x)−2a2F1

[
a, b

2b+ 1
;

4x

(1 + x)2

]
= 2F1

[
a, a− b+ 1

2

b+ 1
2

;x2
]

− 2ax

2b+ 1
2F1

[
a+ 1, a− b+ 1

2

b+ 3
2

;x2
]

(1.2)

and

(1 + x)−2a2F1

[
a, b

2b− 1
;

4x

(1 + x)2

]
= 2F1

[
a, a− b+ 3

2

b− 1
2

;x2
]

+
2ax

2b− 1
2F1

[
a+ 1, a− b+ 3

2

b+ 1
2

;x2
]

(1.3)

provided 2b± 1 is neither zero nor a negative integer, respectively.

Here we give an alternative demonstration of the quadratic transformations
(1.2) and (1.3) by adopting the differential equation approach employed by
Rainville. It is worth remarking that these transformations cannot be derived
completely by the hypergeometric differential equation, but that a related
second-order differential equation has to be solved by the standard Frobenius
method.

Before we give our alternative derivation of (1.2) and (1.3) in Section 3, we
first present an outline of the arguments employed by Rainville [5, p. 63] to
establish the Gauss transformation (1.1).
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2. Derivation of (1.1) by Rainville’s method

The hypergeometric function 2F1(a, b; c; z) satisfies the differential equation [1,
p. 75], [4, Eq. (15.10.1)]

z(1− z)
d2w

dz2
+ {c− (a+ b+ 1)z}dw

dz
− abw = 0. (2.1)

If we put c = 2b and make the change of variable z = 4x/(1 + x)2, then
equation (2.1) becomes

x(1− x)(1 + x)2
d2w

dx2
+ 2(1 + x){b− 2ax+ (b− 1)x2}dw

dx
− 4(1− x)abw = 0.

If we now put w = (1 + x)2ay, then after some simplification we find

x(1− x2)d
2y

dx2
+ 2{b− (2a− b+ 1)x2}dy

dx
− 2ax(1 + 2a− 2b)y = 0, (2.2)

of which one solution is

y = (1 + x)−2a 2F1

[
a, b
2b

;
4x

(1 + x)2

]
. (2.3)

The differential equation (2.2) is invariant under the change of variable
from x to −x. Hence, if we introduce the new independent variable v = x2 the
equation describing y becomes

v(1− v)
d2y

dv2
+ {b+ 1

2
− (2a− b+ 3

2
)v}dy

dv
− a(a− b+ 1

2
)y = 0. (2.4)

We observe that (2.2) is of the same form as the hypergeometric differential
equation (2.1), which therefore has in |v| < 1 the two solutions [4, Eq. (15.10.2)]

2F1

[
a, a− b+ 1

2

b+ 1
2

; v
]

and v
1
2
−b

2F1

[
a− b+ 1

2
, a− 2b+ 1

3
2
− b ; v

]
. (2.5)

We observe that the differential equation (2.2) has the solution (2.3) valid in
|4x/(1 + x)2| < 1, provided 2b is neither zero nor a negative integer. At the
same time, equation (2.2) has the solutions (2.5) with v = x2 valid in |x| < 1.
Therefore, subject to these conditions, there exist constants A and B such that

(1 + x)−2a2F1

[
a, b
2b

;
4x

(1 + x)2

]
= A 2F1

[
a, a− b+ 1

2

b+ 1
2

;x2
]

+Bx1−2b2F1

[
a− b+ 1

2
, a− 2b+ 1

3
2
− b ;x2

]
.
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The left-hand side and the first member on the right-hand side of the above
expression are both analytic at x = 0, but the remaining term is not due to
the presence of the factor x1−2b. Hence B = 0 and by considering the terms
at x = 0 it is easily seen that A = 1. If 2b is a positive integer, the second
solution may involve a logarithmic term in x, which again requires B = 0.
This leads to the required quadratic transformation given in (1.1).

3. An alternative derivation of Theorem 1

We first establish the quadratic transformation (1.2). With c = 2b+ 1 in (2.1)
and the change of variable z = 4x/(1 + x)2 we obtain

x(1−x)(1+x)2
d2w

dx2
+(1+x){2b+1−4ax+2x+(2b−1)x2}dw

dx
−4ab(1−x)w = 0,

which has a solution w = 2F1(a, b; 2b+1; 4x/(1+x)2). With the further change
of dependent variable w = (1 + x)2ay, we find after some simplification

x(1−x2)d
2y

dx2
+{2b+1+2x−(4a−2b+1)x2}dy

dx
+2a{1+2(b−a)x}y = 0. (3.1)

A solution of (3.1) is consequently

y = (1 + x)−2a 2F1

[
a, b

2b+ 1
;

4x

(1 + x)2

]
.

The differential equation (3.1) is not invariant under the change of variable
x to −x, and so we cannot reduce it to the hypergeometric equation (2.1).
Inspection of (3.1) shows that the point x = 0 is a regular singular point. Ac-
cordingly, we seek two linearly independent solutions of (3.1) by the Frobenius
method and let

y = xλ
∞∑
n=0

cnx
n (c0 6= 0), (3.2)

where λ is the indicial exponent. Substitution of this form for y in (3.1) then
leads after a little simplification to

∞∑
n=0

cnx
n−1(n+ λ)(n+ λ+ 2b) =

∞∑
n=0

cnx
n+1(n+ λ+ 2a)(n+ λ+ 2a− 2b)

−2
∞∑
n=0

cnx
n(n+ λ+ a).

The coefficients of x−1 must vanish to yield the indicial equation

λ(λ+ 2b) = 0,
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so that λ = 0 and λ = −2b. Equating the coefficients of xn for non-negative
integer n, we obtain

c1 =
−2(λ+ a)

(1 + λ)(1 + λ+ 2b)
c0,

(3.3)

cn =
{n+ λ+ 2(a− 1)}{n+ λ+ 2(a− b− 1)}cn−2 − 2(n+ λ+ a− 1)cn−1

(n+ λ)(n+ λ+ 2b)

for n ≥ 2.
With the choice λ = 0, we have

c1 =
−2a

(2b+ 1)
c0,

cn =
{n+ 2(a− 1)}{n+ 2(a− b− 1)}cn−2 − 2(n+ a− 1)cn−1

n(n+ 2b)
(n ≥ 2).

Solution of this three-term recurrence with the help of Mathematica generates
the values given by

c2n =
(a)n(a− b+ 1

2
)n

n! (b+ 1
2
)n

c0, c2n+1 =
(a+ 1)n(a− b+ 1

2
)n

n! (b+ 3
2
)n

c1,

the general values being established by induction. Substitution in (3.2) then
yields one solution of (3.1) given by

y1 = c0

{
2F1

[
a, a− b+ 1

2

b+ 1
2

;x2
]
− 2ax

2b+ 1
2F1

[
a+ 1, a− b+ 1

2

b+ 3
2

;x2
]}

when |x| < 1.
A second solution is obtained by taking λ = −2b in (3.3) to yield

c1 =
−2(a− 2b)

(1− 2b)
c0,

cn =
{n+ 2(a− 2b− 1)}{n+ 2(a− b− 1)}cn−2 − 2(n+ a− 2b− 1)cn−1

n(n− 2b)

for n ≥ 2. This generates the values

c2n =
(a− 2b)n(a− b+ 1

2
)n

n! (1
2
− b)n

c0, c2n+1 =
(a− 2b+ 1)n(a− b+ 1

2
)n

n! (3
2
− b)n

c1.

A second solution of (3.1) is therefore given by

y2 = c0x
−2b

{
2F1

[
a− 2b, a− b+ 1

2
1
2
− b ;x2

]
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−2(a− 2b)x

1− 2b
2F1

[
a− 2b+ 1, a− b+ 1

2
3
2
− b ;x2

]}
when |x| < 1.

It then follows, when |x| < 1 and |4x/(1 + x)2| < 1 and provided 2b+ 1 is
neither zero nor a negative integer, that there exist constants A and B such
that

(1 + x)−2a2F1

[
a, b

2b+ 1
;

4x

(1 + x)2

]
= Ay1 +By2. (3.4)

Now the left-hand side of (3.4) and the solution y1 are both analytic at x = 0,
whereas the solution y2 is not analytic at x = 0 due to the presence of the
factor x−2b. Hence B = 0 and, by putting x = 0 in (3.4), it is easily seen
that A = 1. If 2b + 1 is a positive integer, the second solution may involve
a logarithmic term; this again results in B = 0. This then yields the result
stated in (1.2).

A similar procedure can be employed to establish the quadratic transfor-
mation in (1.3). Putting c = 2b−1 in (2.1) and carrying out the same sequence
of transformations, we obtain the differential equation satisfied by

y = (1 + x)−2a 2F1

[
a, b

2b− 1
;

4

(1 + x)2

]
(3.5)

in the form

x(1−x2)d
2y

dx2
+{2b−1−2x−(4a−2b+3)x2}dy

dx
−2a{1+2(a−b+1)x}y = 0. (3.6)

Substitution of (3.2) then leads to the three-term recurrence for the coefficients
cn

c1 =
−2(λ+ a)

(1 + λ)(λ+ 2b− 1)
c0,

cn =
{n+ λ+ 2(a− 1)}{n+ λ+ 2(a− b)}cn−2 + 2(n+ λ+ a− 1)cn−1

(n+ λ)(n+ λ+ 2b− 2)

for n ≥ 2, subject to the indicial equation λ(λ + 2b − 2) = 0. The choice of
indicial exponent λ = 0 yields with the help of Mathematica the values of the
coefficients given by

c2n =
(a)n(a− b+ 3

2
)n

n! (b− 1
2
)n

c0, c2n+1 =
(a+ 1)n(a− b+ 3

2
)n

n! (b+ 1
2
)n

c1,

with c1 = 2ac0/(2b− 1), and the choice λ = 2− 2b yields

c2n =
(a− b+ 2)n(a− b+ 3

2
)n

n! (3
2
− b)n

c0, c2n+1 =
(a− 2b+ 3)n(a− b+ 3

2
)n

n! (5
2
− b)n

c1,
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with c1 = 2(a− 2b+ 2)c0/(3− 2b).
Consequently two solutions of the differential equation (3.6) are

y1 = c0

{
2F1

[
a, a− b+ 3

2

b− 1
2

;x2
]

+
2ax

2b− 1
2F1

[
a+ 1, a− b+ 3

2

b+ 1
2

;x2
]}

and

y2 = c0x
2−2b

{
2F1

[
a− b+ 2, a− b+ 3

2
3
2
− b ;x2

]

+
2(a− 2b+ 2)x

3− 2b
2F1

[
a− 2b+ 3, a− b+ 3

2
5
2
− b ;x2

]}
when |x| < 1. It then follows, when |x| < 1, |4x/(1 + x)2| < 1 and provided
2b− 1 is neither zero nor a negative integer, that there exist constants A and
B such that the function in (3.5) can be expressed as Ay1 +By2. For the same
reasons as in the previous case we find A = 1 and B = 0, thereby establishing
(1.3).
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