760 research outputs found

    Monitoring Feeding Tube Placement

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141133/1/ncp0487.pd

    Comparing PyMorph and SDSS photometry. II. The differences are more than semantics and are not dominated by intracluster light

    Full text link
    The Sloan Digital Sky Survey pipeline photometry underestimates the brightnesses of the most luminous galaxies. This is mainly because (i) the SDSS overestimates the sky background and (ii) single or two-component Sersic-based models better fit the surface brightness profile of galaxies, especially at high luminosities, than does the de Vaucouleurs model used by the SDSS pipeline. We use the PyMorph photometric reductions to isolate effect (ii) and show that it is the same in the full sample as in small group environments, and for satellites in the most massive clusters as well. None of these are expected to be significantly affected by intracluster light (ICL). We only see an additional effect for centrals in the most massive halos, but we argue that even this is not dominated by ICL. Hence, for the vast majority of galaxies, the differences between PyMorph and SDSS pipeline photometry cannot be ascribed to the semantics of whether or not one includes the ICL when describing the stellar mass of massive galaxies. Rather, they likely reflect differences in star formation or assembly histories. Failure to account for the SDSS underestimate has significantly biased most previous estimates of the SDSS luminosity and stellar mass functions, and therefore Halo Model estimates of the z ~ 0.1 relation between the mass of a halo and that of the galaxy at its center. We also show that when one studies correlations, at fixed group mass, with a quantity which was not used to define the groups, then selection effects appear. We show why such effects arise, and should not be mistaken for physical effects.Comment: 15 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile

    Full text link
    We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order < 0.5 dex, systematics in photometry are now about 0.1 dex, despite recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order < 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.Comment: 18 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    Initial Active Interrogation Experiments at The University of Michigan Linear Accelerator Laboratory

    Get PDF
    To support the mission of the Countering Weapons of Mass Destruction Office of the Department of Homeland Security, the Detection for Nuclear Nonproliferation group is researching active interrogation techniques and the development of new detection algorithms for fast neutron spectroscopy. The Countering Weapons of Mass Destruction Officehas loaned us a Varian M9 linear accelerator (linac), helium-3 detectors, boron-coated straw detectors, and perfluorocarbondetectors as part of this research, providing a variety of tools to conduct our experiments.In the summer of 2018, a thorough licensing process concluded, and preliminary experiments commenced. Later in the year, the facility was approved to possess and irradiate depleted uranium, which enabledus to conduct active interrogation experiments.In the fall of 2018, we conducted our first active interrogation measurements using the linac facility. The measurements used the linac to irradiate depleted uranium,lead, and tungsten targets to induce photonuclear reactions to emit fast neutrons. The neutrons were then detected using a simple helium-3 detector. Simulations were developed using MCNPX-PoliMi and MCNP 6.1 to validate the measured results. The simulations showed close agreement for depleted uranium but indicated that additional investigation is required for the lead and tungsten data. The facility will be indispensable as the researchprogressesbyproviding a mixed-radiation field consisting of fast neutrons and photons, which is similar to the radiation environment encountered in active interrogation scenarios.Additionally, the facility is involved inresearch related toradiation damage, dosimetry, and radiation-oncology.Future activities will involve characterization of photonuclear properties of various materials, and collaborations with other university researchers

    A Slide Rule for the Evaluation of Geochemical and Mineral Survey Data. EUR 4608.

    Get PDF
    <p>FB = false belief, TB/MC = true belief/memory control, *Control trials include TB/MC + filler trials, ** Such deficit could be combined with difficulties in processing the input information if the performance on the control trials is below the cut-off albeit better than the performance on the FB trials.</p

    Energy transfer in Eu3+ doped scheelites : use as thermographic phosphor

    Get PDF
    In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D0 – 7F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent
    • …
    corecore