170 research outputs found

    Preparation of Insoluble Hole-Injection Layers by Cationic Ring-Opening Polymerisation of Oxetane-Derivatized TriPhenylamineDimer for Organic Electronics Devices

    Get PDF
    AbstractWe have demostrated that oxetane-derivatized hole conductors as well as electroluminescent polymers can be crosslinked via cationic ring-opening polymerisation (CROP) without deterioration of their electrical and electro–optical properties. This allows the fabrication of electronic multilayer devices via solution process. Here, we demonstrate three kinds of CROP crosslinking methods. They are (1) oxidative crosslinking, (2) photo crosslinking, and (3) trityl crosslinking. The crosslinking process parameters as well as the fluorescence characteristics and the solvent resistance of the resulting films have been investigated. The result shows that the oxidative crosslinking (1) gives the possibility to obtain the doping effect which increases the conductivity of the insoluble layer, although it reduces the fluorescence characteristics. The photo crosslinking (2) is controlled by irradiation; therefore, it gives the possibility to pixelate or pattern the film (lithography). It shows less fluorescence quenching than in (1). The trityl crosslinking (3) is suitable for the devices which are not pixelated and do not need the doping effect. Irradiation is not applicable here. Finally, we applied the insoluble layers in hole-only devices and blue-emitting OLEDs. We found that introduction of the layers improves the efficiency of the OLEDs

    Holographic multiplexing in photorefractive polymers

    Get PDF
    A new multiplexing schedule is derived for multiplexing holograms in photorefractive polymers which do not exhibit mono-exponential recording behavior. An M-number (M/#) of 0.3 was measured experimentally by recording 20 holograms of roughly equal strength in a single location of 125-ÎĽm-thick material using peristrophic multiplexing. The effects of hologram dark-decay on the time-evolution of the M/# and the relative strengths of individual holograms is investigated

    Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency

    Get PDF
    We use the optical transfer-matrix method to quantify the spatial distribution of light in solid-state dye-sensitized solar cells (DSCs), employing material optical properties measured experimentally in the accompanying article (Part I) as input into the optical model. By comparing the optical modeling results with experimental photovoltaic action spectra for solid-state DSCs containing either a ruthenium-based dye or an organic indoline-based dye, we show that the internal quantum efficiency (IQE) of the devices for both dyes is around 60% for almost all wavelengths, substantially lower than the almost 100% IQE measured for liquid DSCs, indicating substantial electrical losses in solid-state DSCs that can account for much of the current factor-of-two difference between the efficiencies of liquid and solid-state DSCs. The model calculations also demonstrate significant optical losses due to absorption by 2, 2′,7, 7′ -tetrakis-(N,N -di- p -methoxyphenyl- amine)-9, 9′ -spirobifluorene (spiro-OMeTAD) and TiO2 in the blue and to a lesser extent throughout the visible. As a consequence, the more absorptive organic dye, D149, should outperform the standard ruthenium complex sensitizer, Z907, for all device thicknesses, underlining the potential benefits of high extinction coefficient dyes optimized for solid-state DSC operation. © 2009 American Institute of Physics.David M. Huang, Henry J. Snaith, Michael Grätzel, Klaus Meerholz and Adam J. Moul

    Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite,” Phys

    Get PDF
    All parameters describing the charge carrier dynamics in a poly͑phenylene vinylene͒-based photorefractive ͑PR͒ composite relevant to PR grating dynamics were determined using photoconductivity studies under various illumination conditions. In particular, the values of the coefficients for trap filling and recombination of charges with ionized sensitizer molecules could be extracted independently. It is concluded that the PR growth time without preillumination is mostly determined by the competition between deep trap filling and recombination with ionized sensitizer molecules. Further, the pronounced increase in PR speed upon homogeneous preillumination ͑gating͒ as reported recently is quantitatively explained by deep trap filling

    Making graphene nanoribbons photoluminescent

    Get PDF
    We demonstrate the alignment-preserving transfer of parallel graphene nanoribbons (GNRs) onto insulating substrates. The photophysics of such samples is characterized by polarized Raman and photoluminescence (PL) spectroscopies. The Raman scattered light and the PL are polarized along the GNR axis. The Raman cross section as a function of excitation energy has distinct excitonic peaks associated with transitions between the one-dimensional parabolic subbands. We find that the PL of GNRs is intrinsically low but can be strongly enhanced by blue laser irradiation in ambient conditions or hydrogenation in ultrahigh vacuum. These functionalization routes cause the formation of sp3 defects in GNRs. We demonstrate the laser writing of luminescent patterns in GNR films for maskless lithography by the controlled generation of defects. Our findings set the stage for further exploration of the optical properties of GNRs on insulating substrates and in device geometries

    Thermodynamics of the Atomic Distribution in Pt3Pd2, Pt2Pd3 and their Corresponding (111) Surfaces

    Get PDF
    In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen

    Formation of a Silicate L 3 Phase with Continuously Adjustable Pore Sizes

    Get PDF
    the magnitude of the gain. Thus, the delay time of Ďł0.5 s observed in REFERENCES AND NOTES ___________________________ Since the demonstration that surfactants could be used in the fabrication of silica mesophases (1), amphiphiles have been used to produce inorganic materials with a variety of mesomorphic structures, including lamellar, hexagonally packed tubular, and cubic forms (2-12). Surfactant-induced assembly of inorganic structures is now recognized as a way to make novel nanoporous materials with larger pore sizes than was previously possible. However, techniques developed thus far have limited capability to produce very large pores of a predetermined size. Here we describe the synthesis and characterization of a new, random, bicontinuous silicate mesomorph for which predetermined pore sizes, over a very large size range, may be obtained. Most procedures for forming mesoporous silicates rely on the micelle-forming properties of a surfactant, typically at a low surfactant concentration. The addition of an inorganic precursor, such as an alkoxysilane, leads to association and coassembly into a mesophase precipitant whose structural dimensions are controlled by the surfactant length. Polymerization of the inorganic precursor and removal of the surfactant results in a rigid silica shell conforming to the structural shape of the mesophase. However, the use of dilute surfactant solutions limits the ability to predict the topology of the mesophase. Also, the typical product of the process is a powder of micrometer-sized particles, thereby limiting uses in filtration, optical, or electronic applications, where large-area thin films or large uniform monoliths of material are required. Finally, the pore volume is filled with surfactant; that is, the surfactant must be removed before the pores can be accessed. These difficulties may be partially avoided by the use of high-concentration surfactant systems in which either the inorganic precursors minimally perturb a preexisting surfactant-water liquid crystalline (LC) structure or the LC nature of the system may be recovered under appropriate experimental conditions, as shown by Attard et al. (6). Also, because the inorganic precursor does not precipitate out of solution, the resultant material conforms to the shape of the container in which it forms, thereby allowing fabrication of large monoliths of a desired size and shape. However, even in these cases, the pore size is limited by the surfactant and the limited range of compositions on the phase diagram for a given mesomorphic structure. Applications of silicate mesophases as filtration media, optical materials, and nanocomposites would be facilitated if th
    • …
    corecore