57 research outputs found

    Identification and characterization of the maize arogenate dehydrogenase gene family

    Get PDF
    In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1–zmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis

    Identification and characterization of a Zea mays line carrying a transposon-tagged ENOD40

    No full text
    In Zea mays, two ENOD40 homologous were identified that show only 30% of sequence homology to each other. We identified line e40-mum1 carrying a Mu transposon inserted in ZmENOD40-1, the maize gene that has the highest homology to leguminous ENOD40. The insertion causes a dramatic reduction of the ZmENOD40-1 transcript level. Irrespective of this, homozygous e40-mum1 plants are still able to interact with mycorrhizal fungi. Furthermore, no phenotypic aberrations correlated to the presence of e40-mum1 have been identified and therefore it is suggested that Z. mays ENOD40 genes are functionally redundant despite their strikingly low homology

    A Biochemical Phenotype for a Disease Resistance Gene of Maize.

    No full text

    Novel DICER-LIKE1 siRNAs Bypass the Requirement for DICER-LIKE4 in Maize Development

    No full text
    Dicer enzymes function at the core of RNA silencing to defend against exogenous RNA or to regulate endogenous genes. Plant DICER-LIKE4 (DCL4) performs dual functions, acting in antiviral defense and in development via the biogenesis of trans-acting short-interfering RNAs (siRNAs) termed tasiR-ARFs. These small RNAs play an essential role in the grasses, spatially defining the expression domain of AUXIN RESPONSE FACTOR3 (ARF3) transcription factors. However, contrary to tasiR-ARFs' essential function in development, DCL4 proteins exhibit strong evidence of recurrent adaptation typical of host factors involved in antiviral immunity. Here, we address how DCL4 balances its role in development with pressures to diversify in response to viral attack. We show that, in contrast to other tasiR-ARF biogenesis mutants, dcl4 null alleles have an uncharacteristically mild phenotype, correlated with normal expression of select arf3 targets. Loss of DCL4 activity yields a class of 22-nucleotide tasiR-ARF variants associated with the processing of arf3 transcripts into 22-nucleotide secondary siRNAs by DCL1. Our findings reveal a DCL1-dependent siRNA pathway that bypasses the otherwise adverse developmental effects of mutations in DCL4. This pathway is predicted to have important implications for DCL4's role in antiviral defense by reducing the selective constraints on DCL4 and allowing it to diversify in response to viral suppressors

    Plant–pathogen microevolution: Molecular basis for the origin of a fungal disease in maize

    Get PDF
    A new and severe disease of maize caused by a previously unknown fungal pathogen, Cochliobolus carbonum race 1, was first described in 1938. The molecular events that led to the sudden appearance of this disease are described in this paper. Resistance to C. carbonum race 1 was found to be widespread in maize and is conferred by a pair of unlinked duplicate genes, Hm1 and Hm2. Here, we demonstrate that resistance is the wild-type condition in maize. Two events, a transposon insertion in Hm1 and a deletion in Hm2, led to the loss of resistance, resulting in the origin of a new disease. None of the other plant species tested is susceptible to C. carbonum race 1, and they all possess candidate genes with high homology to Hm1 and Hm2. In sorghum and rice, these homologs map to two chromosomal regions that are syntenic with the maize Hm1 and Hm2 loci, indicating that they are related to the maize genes by vertical descent. These results suggest that the Hm-encoded resistance is of ancient origin and probably is conserved in all grasses
    • …
    corecore