1,028 research outputs found

    Cellular solid behaviour of liquid crystal colloids. 1. Phase separation and morphology

    Full text link
    We study the phase ordering colloids suspended in a thermotropic nematic liquid crystal below the clearing point Tni and the resulting aggregated structure. Small (150nm) PMMA particles are dispersed in a classical liquid crystal matrix, 5CB or MBBA. With the help of confocal microscopy we show that small colloid particles densely aggregate on thin interfaces surrounding large volumes of clean nematic liquid, thus forming an open cellular structure, with the characteristic size of 10-100 micron inversely proportional to the colloid concentration. A simple theoretical model, based on the Landau mean-field treatment, is developed to describe the continuous phase separation and the mechanism of cellular structure formation.Comment: Latex 2e (EPJ style) EPS figures included (poor quality to comply with space limitations

    Characterization of Standardized Lunar Regolith Simulant Materials

    Get PDF
    Lunar exploration requires scientific and engineering studies using standardized testing procedures that ultimately support flight certification of technologies and hardware. This motivates the development of traceable, standardized lunar regolith simulant (SLRS) materials. For details, refer to the 2005 Workshop on Lunar Regolith Simulant Materials

    A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics

    Get PDF
    We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN) microwave kinetic inductance detectors. Energy resolution of 0.4 eV and arrival-time resolution of 1.2 microseconds are achieved. 0-, 1-, 2-photon events are resolved and shown to follow Poisson statistics. We find that the temperature-dependent frequency shift deviates from the Mattis-Bardeen theory, and the dissipation response shows a shorter decay time than the frequency response at low temperatures. We suggest that the observed anomalous electrodynamics may be related to quasiparticle traps or subgap states in the disordered TiN films. Finally, the electron density-of-states is derived from the pulse response.Comment: 4 pages, 3 figure

    Greenland ice core “signal” characteristics: An expanded view of climate change

    Get PDF
    The last millenium of Earth history is of particular interest because it documents the environmental complexities of both natural variability and anthropogenic activity. We have analyzed the major ions contained in the Greenland Ice Sheet Project 2 (GISP 2) ice core from the present to ∼674 A.D. to yield an environmental reconstruction for this period that includes a description of nitrogen and sulfur cycling, volcanic emissions, sea salt and terrestrial influences. We have adapted and extended mathematical procedures for extracting sporadic (e.g., volcanic) events, secular trends, and periodicities found in the data sets. Finally, by not assuming that periodic components (signals) were “stationary” and by utilizing evolutionary spectral analysis, we were able to reveal periodic processes in the climate system which change in frequency, “turn on,” and “turn off” with other climate transitions such as\u27that between the little ice age and the medieval warm period

    Search for Optical Pulsation in M82 X-2

    Get PDF
    We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ^2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000–11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000–8000 Å wavelength range to be fainter than ~20.5 mag_(AB) , corresponding to ~23 μJy

    Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging

    Get PDF
    Flows of dense emulsions show many complex features among which long range nonlocal effects pose a problem for macroscopic characterization. In order to get around this problem, we study the flows of several dense emulsions in a wide-gap Couette geometry. We couple macroscopic rheometric experiments and local velocity measurements through MRI techniques. As concentration heterogeneities can be expected, we designed a method to measure the local droplet concentration in emulsions with a MRI device. In contrast to dense suspensions of rigid particles where very fast migration occurs under shear, we show that no migration takes place in dense emulsions even for strains as large as 100 000 in our systems. As a result of the absence of migration and of finite size effect, we are able to determine very precisely the local rheological behavior of several dense emulsions. As the materials are homogeneous, this behavior can also be inferred from purely macroscopic measurements. We thus suggest that properly analyzed purely macroscopic measurements in a wide-gap Couette geometry can be used as a tool to study the local constitutive laws of dense emulsions. All behaviors are basically consistent with Herschel-Bulkley laws of index 0.5, but discrepancies exist at the approach of the yield stress due to slow shear flows below the apparent yield stress in the case of a strongly adhesive emulsion. The existence of a constitutive law accounting for all flows contrasts with previous results obtained within a microchannel by Goyon et al. (2008): the use of a wide-gap Couette geometry is likely to prevent here from nonlocal finite size effects; it also contrasts with the observations of B\'ecu et al. (2006)

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.

    Drag on particles in a nematic suspension by a moving nematic-isotropic interface

    Get PDF
    We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles
    corecore