69 research outputs found

    Transport processes of particles in dilute suspensions in turbulent water flow—phase II

    Get PDF
    This work was concerned with an improved and more practical understanding of particle motion in a turbulent fluid field. It is felt that such an increased understanding has been achieved both in an analytical and in an experimental sense. Analytically, a theory simplified by the restrictive constraints of isotropy and Stokesian drag has been developed. Assumption of a reasonable particle energy spectrum allowed calculation of various statistical quantities important in the determination of the particle's turbulent motion. By such an analysis three characterizing parameters were found. Two describe inertial effects due to the particle's size and density. They were found to be of prime importance in the determination of the ratio of the particle's fluctuating velocity variance to that of the fluid. The crossing of the particle from one region of correlated fluid turbulence to another by virtue of its free fall velocity is described by the third parameters. This parameter was shown to be of particular importance in limiting the particle's velocity correlation. The two effects, of inertia and of free fall velocity, together act to determine dispersion. A well parameterized particle experiment was undertaken. Analysis of the particles' behavior in the turbulent flow gave a three dimensional characterization of their motion. In particular calculation of velocity variances, autocorrelations, and energy spectra were made. These measurements in conjunction with measurements on the turbulent fluid field allowed comparison between theory and experiment. Comparison of theoretical prediction to experimental observation showed good agreement provided the underlying assumptions inherent in the theoretical derivation were valid. Agreement suffered when these assumptions proved less valid. In particular non-Stokesian drag and anisotropic effects caused. disagreement between theory and experiment.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Transport processes of particles in dilute suspensions in turbulent water flow—phase III

    Get PDF
    Understanding the basic mechanisms and predicting the behavior of particles suspended in turbulent fluid flow are essential to environmental conservation and to multiphase system design. Air and water pollution, sedimentation and erosion of river beds and coastal shorelines, and atmospheric fallout are some of the areas in which particle suspensions are of key importance. Detailed experimental measurements of dilute particle suspensions have been performed which examined the effects of particle size, shape and relative density on the statistical response of such particles in a turbulent fluid. Shape was found to be of minor importance for spheres, cubes and tetrahedrons. However, size was found to be important when the particle dimension was as large or larger than the fluid turbulence structure. Relative density influenced both free fall and inertial effects. An analytical model was developed which included these latter effects. It agrees well with observed particle dispersion measurements.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Institutional Mergers in Ireland

    Get PDF
    The importance of knowledge as a driver of social and economic growth and prosperity, and the increasingly competitive “global race for knowledge and talent” (Hazelkorn, Higher Educ Manage Policy 21(1):55–76, 2009) have combined to transform the higher education landscape, forcing national governments and higher education institutions (HEIs) to pursue new ways of addressing the challenges of a multi-polar world order. Rising demand for higher education (HE), as part of the broader shift from elite to mass to universal participation, has led to the emergence of new models of provision. At the same time, many governments face restrictions on public resources due to high levels of public and private debt; accordingly, system-level and institutional restructuring has been contemplated as a way to enhance quality, performance and efficiency

    p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production

    Get PDF
    Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production

    Systems Biology Approaches Reveal a Specific Interferon-Inducible Signature in HTLV-1 Associated Myelopathy

    Get PDF
    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP

    Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

    Get PDF
    In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes

    Citando Mario Juruna: imaginário linguístico e a transformação da voz indígena na imprensa brasileira

    Full text link
    corecore