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ABSTRACT

TRANSPORT PROCESSES OF PARTICLES IN DILUTE SUSPENSIONS
IN TURBULENT WATER FLOW-PHASE III

Understanding the basic mechanisms and predicting the behavior of pérticles
suspended in turbulent fluid flow are essential to environmental conservation and
to multiphase system design. Air and water pollution, sedimentation and erosion
of river beds and coastal shorelines, and atmospheric fallout are some of the
areas in which particle suspensions are of kéy importance. Detailed experimental
measurements of dilute particle suspensions have been performed which examined the
effects of particle size, shape and relative density on the statistical response -
of such particles in a turbulent fluid. Shape was found to be of minor importance
for spheres, cubes and tetrahedrons. However, size was found to be important when
the particle dimension was as large or larger than the fluid turbulence structure.
Relative density influenced both free fall and inertial effects. An analytical
model was developed which included these latter effects. It agrees well with ob-
served particle dispersion measurements.
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NOMENCLATURE

normalization constant for modified uniform theory

particle radius

= time macroscale fit constants

fit coefficients for carriage calibration
coefficient, Eq. (3.3-25)

coefficient, Eq. (3.3-24)

drag coefficient

particle diameter

frequency

particle free fall velocity

quiescent free fall velocity

turbulent free fall velocity

normalized energy spectrum

functional, Eq. (3.3-23)

pertaining to an individual run

wave number

number of annular elements

radial position probability density function
probability of an acceptable run

modified uniform distribution probability density function
uniform distribution probability density function
response function

radial position

pipe inside radius

- zero lag time velocity correlation matrix



Re

R(T)

X

X2 (t)

Z

= Reynolds number

= autocorrelation function

= time

= time of run in jth element
= voltage difference

= time of run

= particle time constant

= fluctuating velocity

voltage difference

fluid velocity at pipe centerline

local mean fluid velocity

instantaneous velocity

n

voltage differerence

cartesian position

dispersion function, Eq. (4.1-3)

axial position or separation

Greek Symbols

=]

max

particle size parameter: o = 317a2

= particle density parameter: § = 3p/(2pp+p)

= particle free fall parameter

= dimensionless radial coordinate

= dimensionless mean radius for an individual run
= maximum dimensionless radius for acceptable runs
= angle

= spatial microscale

= spatial macroscale

= dynamic viscosity
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Subscripts

Tms
T*

u

Z
1,2,3

primes

vi
kinematic viscosity
particle inertial parameter; time variable
density
standard deviation or error
dimensionless rms position for an individual run
lag time; temporal microscale
Eulerian time macroscale
convected frame fluid time macroscale
circular frequency (radians/second)

circular frequency for zero free fall velocity particles

and Superscripts

Eulerian frame of reference

fluid

cartesian tensor index notation, numerical index
Lagrangian frame

mean; modified uniform

maximum

zero reference condition

particle

quiescent

radial direction, run

root mean square

particle residence time in all elements
uniform distribution

axial direction

numerical index

rms quantities



overbars
< >
3]

long time averages
ensemble average

azimuthal direction
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1. INTRODUCTION

Predicting particle transport is a relatively complicated engineering problem
which has increased significance in environmental applications and in multiphase
system design. In the areas of water and air pollution, river bed erosion and
sediméntation as well as atmospheric fallout the behavior of suspended particulétes
in turbulent fluid flows is a key importance. The studies reportéd here provide
results which enhance scientific understanding of the basic particle transport

phenomena and engineering models which provide means for predicting such transport.

1.1 Objectives and Background

Investigation§ completed by this project conclude a three phase study of fhe
detailed behavior of particle transport processes in dilute suspensions in
turbulent water flow. Each phase examined specific aspects of the research and
represents an extension of the initial work developed by Jones (1966) and
Shirazi (1967). In this portion of the report, the overall direction of these
studies will be outlined. Indication of the accomplishment of the project goals
will also be given. However, the detailed presentation of these accomplishments
will be either given in later sections of this report or explicitly referred to in
previous articles on.this research.

The primary objective initiating this research was to measure directly the
behavior of a suspended particle in a well documented turbulent field. From these
detailed measurements of the statistical response of the particle, the associated
transport processes can be evaluated. These results can be employed to develop and
test analytical models of suspended particle behavior.

At the beginning of these studies only simplified models had been proposed
other than the linearized, but otherwise complete, model of Chao (1964). Jones

(1966) attempted to verify Chao's model, but was plagued with poor signal-to-



noise in the particle monitoring system. However, the feasibility of the re-
search was demonstrated. Shirazi (1967) by careful use of signal filtering and
controlling closely the relative density was able to obtain improved experimental
reéults for neutrally bouyant particles and to extend the analysis to separate

the ''essential and "statisticalf non-linearities in the analytical formulation of
the_particle behavior. However, in both these stﬁdies light emitting particles
were used which resulted in significant extraneous light noise and unstable

light emission from the particles. Part of Phase I of this study (Jones et al.,
1971) was designed to modify the particle monitoring system to remove these
deficiencies.

In Phase I (Project A-019-ILL) the experimental system was improved by
replacing the fluorescent light emitting material with very stable Co-60 radio-
active chips as the means of particle tagging. Sodium-iodide crystals were
installed as integral parts of the photomultiplier monitoring system. This
‘system provided the-necessary stability and improvement in signal-to-noise for
accurate determination of particle position. In addition, commercial differential
amplifiers with sharp low pass filters were added to the data procurement which
further improved the signal-to-noise level. To insure proper lock-in of the
particle monitoring system a signal feedback system was incorporated which
improved the percentage of successful data runs. Jones, et al. (1971) and Meek
(1972) have -discussed these improvements and their results in detail.

To enable the detailed fluid turbulence structure to be experimentally deter-
mined in the test section, a replacement section which provided anemometer probe
access parts along its length was added. Additional inlet flow section modifica-
tions were installed to improve the rate of reaching fully developed flow in the

test section.. These modifications enabled complete examination of the fluid
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turbulence field in which the particle trajectory was measured. The data show

that the stationary, fully developed condition was obtained throughout the test

section. Details of these observations are given by Meek (1972) and Howard (1974).
The analytical development carried out in Phase I of the research was

primarily to examine the nature of the drag law to be used over a wide range of‘

particle parameterization. This resulted in a linearized drag law which was

shown to be applicable for ranges of particle Reynolds Number up to about 400 which

includes the large variety of engineering applications. This work is reported

in detail by Jones, Ostensen and Meek (1973).

Phase II (Project B-042-~ILL) made direct use of these improved facilities -
to obtain particle trajectory data. The primary objective was to study free fall
effects for a variety of constant size spherical particles. These data were

reported by Meek (1972) and Jones, et al. (1972). In addition a comparison of

the effect of varying particle shapes (cubes, tetrahedrons and spheres) was

conducted, showing no significant influence between particles with similar
volumetric displacements and free fall velocities. This result is of prime sig-
nificance as it allows a complete study of the problem with ideal spherical par-
ticles for which analytical relations can readily be formulated. Detailed pre-
sentation of results for this study are given by Jones, et al. (1972).

In addition, a significant goal of the Phase II project was to carefully
examine and document the Eulerian fluid field turbulent structure in the test
section. Meek (1972) presented detailed measurements of the axial fluid velocity
component through mean velocity, intensity, skewness and flatness profiles across
the pipe radius. He further analyzed the autocorrelations and spectrum at several
radial and axial locations, showing the fully developed and stationary nature
to the test section flow. Radial separation spatial scales were also determined.

Burchill's (1970) data were used to provide intensities and scales for each of the



radial, azimuthal and axial components of the Eulerian velocity components. These
fluid measurements were presented in the Phase II report by Jones, et al. (1972)
and form the basis for input to analytical prediction models for particle transport.

The other major goal of the B-042-ILL project was to develop an engineering
model to describe particle dispersion and related behavior. Meek (1972) developed
both a complete theory and a simplified theory model for this behavior. In the
former, all linearized terms were included in the governing relations. This led
to a rather cumbersome engineering model. However, he was able to show that the
prediéted results agreed closely with the measured particle behavior, verifying
the correctness of the model. The simplified theory, for a wide range of particle
parameterization, gave identical results and provided a readily useable engineering
model for predicting such particle behavior. Details of this model have been
presented by Meek and Jones (1973) as well as Meek (1972) and Jones, et al (1972).
Extensions of this theory to include nonhomogeneous and anisotropic flow field
structure were left to the third phase of the study, which has just been cbmpleted
and is the principle material presented in later chapters.

The final part of the research project, Phase III (B-067-ILL), has just
concluded and the results are presented by Howard (1974) and in this report.
The research encompassed both experimental and analytical aspects and had
the following goals:

Experimental

1. To examine particles of similar size with both negative and
positive buoyancy at the same free fall Reynolds number;

2. To vary particle size and determine its relation with turbulence scales
in affecting particle response;

3. To simulate sand like particles to study particle inertial effects
on particle response;

4. To determine two-point lateral and longitudinal fluid velocity
correlations from which the convected frame structure of the turbulent
field is evaluated;

PEESY N



and Analytical

5. To improve the theory to more correctly include effects of both
particle size and relative density;

6. To examine the interrelationships of the Eulerian-Lagrangian reference
frames through comparison of observed particle-fluid turbulence with
analytical results suggested in the literature.

All of these objectives have been accomplished in this study with the exception
of 6. This objective requires somewhat more accurate data than was experimentally

procured. Although it is of high scientific interest, its direct importance to

the engineering models developed in this study is of minor significance.

1.2 Review of Previous‘Analytical Work

The initial development of the theory of particle behavior in a quiescent
fluid is generally attributed to Basset (1961), Boussinesque (1903), and Oseen
(1927) in their formulation of the governing equations for suspended spherical
particles. Tchen (1947) succeeded in extending the governing equation to the
case of an unstéady velocity field. Subsequent contributions to the explicit
nature of some of the terms in the equation by Lumley (1957) and Corrsin and
Lumley (1956) have brought the problem‘to its present theoretical description.

The solution of the complete equations of motion has not yet been achieved.
Lumley (1957) described the nature of the nonlinearities and the difficulty of
solution of the complete eqﬁations of motion. Several authors have found solutions
to simplified versions of the equation. Soo (1956) oﬁtained a relation for the
particle autocorrelation function in the Lagrangian frame for a highly restrictive
case of the‘governing equation where only Stokes drag and gravity were assumed to
be the important forces on the particie. Friedlander (1957) solved a similar but
still incomplete version of the equation by including pressure gradient effects.
He found a relation for the rms relative velocity between the particle and the

fluid. The most complete solutions to the problem to date have been presented by



Hinze (1959) and by Chao (1964). They solved linearized forms of the governing
equation with transform techniques and included effects of particle acceleration,
apparent mass, and pressure gradients in the fluid. Shirazi (1967) used a con-
ditional averaging technique to calculate relationships between statistical
properties of the particle and the fluid under the assumption that the particle
velocity and fluid velocity are uncorrelated. Peskin (1971) has solved the
simplified version of the governing equation like Soo and Friedlander, but his
solution does not require the restrictive side condition that the particle follow
the fluid element as stipulated in the solutions by Hinze and by Chao. Meek

(1972) retained the influence of finite free fall due to an external field, such
as gravity. He was able to accommodate the resulting crossing trajectories

effecfs within the restriction that the response time of the particle is short
compared to the characteristic Lagrangian time scale of the fluid turbulence.

His solutions‘provide the general analytical consistency and interrelation between
the various competing phenomena. vAhmadi and Goldschmidt (1970) used three dif-
ferent numerical techniques to solve the governing equations of motion for the
turbulent transport coefficient of a spherical particle moving in a turbulent field.
They concluded that the particle diffusivity increases with increasing particle
size up to the size microscale of the turbulence from whence, for larger particlés,
the diffusivity decreases. A reiative density increase of the particle reduced the
diffusivity for all but very small particles.

The theory of suspended particle dispersion is intimately involved with the
dispersion and diffusion mechanisms of the uhderlying turbulent fluid field.
Taylor's (1921) original paper considered the diffusion of fluid particles in
homogeneous flow as being made up of many continuous random movements. The

movements were related to each other in time by a correlation coefficient between




the Lagrangian frame veiocities at different times. Only Batchelor (1957) has
extended the theory into the realm of free turbulent shear flows where turbulent
scales are spatially variable. The confined turbulent flow in a pipe is a situation
where spatial variation of turbulent scales is also encountered. The effect of

the radial noﬁhomogeneity of pipe flow on particle dispersion is developed in

detail by Howard (1974) and is presented in detail in Chapter 3.

1.3 Review of Previous Experimental Investigations

Experimental investigations of single particle motion under a wide variety
of flbw conditioné is extensively reported by Torobin and Gauvin (1959-61).
Most of the experimental work before 1940 deals with the flow field around the
sphere and the variation of the drag coefficient at different Reynolds numbers.
Later experiments by Batchelor, Binnie and Phillips (1955) and Binnie and Phillips
(1958) were performed with discrete spheres in a two inch diameter horizontal pipe
to determine their mean velocity by a transit time technique. Kada and Hanratty
(1960) measured the effect of solid particlé loadings on turbulent diffusion in
a pipe and found that the effect of solid particle loadings depended upon the
concentration and free fall veloéity of the solid particles. Concentrations above
a threshold level increased the fluid's diffusion coefficient as did an increase
in particle free fall velocity, presumably through the generation of increased
turbulent energy in the fluid. Recent experiments on dilute suspensions have
been dohe by Kennedy (1965), Snyder (1969), Meek (1972) and Howard (1974).
Kennedy used light sensing photomultiplier tubes to detect light reflected from
particles as they traversed fixed planes at selected axial locations in his
vertical square duct using windtunnel grid generated turbulence. Timing tech-
niques were used to infer particle velocities. Snyder in a similar windtunnel

study used photographic techniques and graphical analysis to determine particle

s



positions and from which particle dispersion was inferred. Meek used a modified
version of Jones' (1966) system to obtain a continuous analog track of the
particle position as it moved in a vertical pipe flow. The system used by Howard
was virtually identical to the one used by Meek. Howard extended the range of
particle parameterization to include detailed examination of free fall effects,‘
particle size effects and inertial effects. These are discussed in Chapters 2

and 4 and in Appendix B. N

1.4 Outline of Report Coverage

This report includes an overall review of the three phase research study
of the title problem. In Chapter 2 a comprehensive discussion is given of suspended
particle behavior as it is understood from previous experimental studies and from
work completed in this study. The detailed sets of data from this study are
presented in Appendix B to provide ready access to the reader. Complete analytical
model development, including a brief review of the isotropic and homogeneous
model theorysis presented in Chapter 3. Also included are the extensions into
nonhomogeneous fluid fields as well as the effects of anisotropy in the fluid
field. Chapter 4 provides a comparison between analytical predictions and
experimental observations.* In Chapter 5 research conclusions are presented
with suggested areas in which future work would be useful. The three Appendices
(A, B and C) present: pertinent fluid turbulence data; particle trajectory data;
and data processing techniques, respectively. These are included to provide
easy access of the data to the reader. Many detailed accounts of the experiments
and the analyses are specifically referred to‘in the literature and are omitted

when they are considered non-essential to the presentation.

*
This discussion indicates the applicability of the model for several engineering
problem areas.




2. GENERAL DISCUSSION OF PARTICLE MOTION BEHAVIOR

2.1 Parameters Which Effect Particle Motion

In the development of theoretical models to predict particle motion, it
is essential that the phenomena be sufficiently understood to insure that the
model development incorporétes these features. Although the analyses and experi-
ments were performed simultaneously, they are presented separately so as to enable
a complete picture of each aspect to be developed. The experimental observations
are discussed in this chapter to enable the assumptions and justifications
employed in the analytical model development of chapter three to be more readily
accepted. In this chapter only selected experimental results are presented.
Additional data tabulation is included in several Appendices and in the referenced
literature.

Those parameters effecting the motion of particles in a turbulent fluid
flow can generally be classified in two groups: (1) physical parameters of the
particle itself and (2) characteristics of the flow field. Physical properties
of the particle include its size, shape, density and roughness and its related
acceleration and spin. For simplification of analytical treatment, we and
other investigators have assumed a smooth, non-spinning spherical particle. How-
ever, we (Jones et al. 1972) have investigated experimentally the effects of
particle shape. Torobin and Gauvin (1959-61) discuss the effects of surface
roughness as well as other physical particle characteristics. The primary
characteristics of the flow field effecting particle motion are its Reymolds
number and the intensities and scales of the turbulence. The variation of the
flow field--whether its turbulence is homogeneous or isotropic--will also affect
particle motion. Both groups of parameters act together to govern particle

motion. By examining each of the parameters separately, we sought to discover its
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individual importance and determine a rational explanation for the mechanism

of its effect.

2.2 Particle Size

Qualitatively we expect that very large'particles would not respond to the
constantly occurring random velocity fluctuations characteristic of fluid:turbu—
lence. Conversely, we would expect very small particleS‘to follow closely eéch
change in its neighborhood fluid velocity.

Here we have implicitly made a comparison between the particle Size ahd the
eddy size of the fluid velocity turbulent fluctuations. ‘The physical size of these
fluid velocity fluctuations is known as its turbulent scale. This can be determined

as either‘a measure of the fluid turbulence physical domain (spatial scale) or

a measure of how persistent this structure is (temporal scale). To evaluate the

effect of particle size on its motion in a turbulent field we would expect the
fluid spatial scale to be the importént factor. If the particle is lafge with
respect to the:fluid spatial scale, then the fluid velogity fluctuations (or
”eddieé") merely tickle the surface of the particle. Thus, the perturbing
effect of these eddies is averaged over the large particle surface and particle
motion is unaffected. For an extremely small particle we would expect the
particle to be completely dominated by each surrounding individual fluctuating
fluid element and for a neutrally buoyant small particle to behave similarly to

a fluidvelement.

2.3 Particle Density

Acting in conjunction with the effect of particle size is the effect of
particle density. A very dense particle has a relatively large inertial mass
and a very light particle has a relatively small enertial mass. Since the inertial

mass associated with a suspended particle is composed of not only its own mass
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but that of an additional mass of a fractional amount of the displaced fluid,
the low density particle does not have its inertial mass reduced to an insig-
nificant level. In Chapter three this associated surrounding fluid mass will
be shown to limit the particle inertial effect to non-zero values. It is ex-
pected, however, that relatively high density particles will behave more sluggishly
than relatively low density particles of the same size.

For particles with densities different than the surrounding fluid the effect
of gravitational and external body forces can be important. Only when the
particle's motion relative to the surrounding fluid is small, providing an
associated Reynolds Number in the non-separated, Stokes' flow regime, can the
gravitational influence on the particle's turbulent motion be ignored. This is
most readily examined through the particle's free fall velocity. A particle
with either a relatively high or low density has a large free fall velocity
(unless it is extremely small). Such a particle moves rapidly through the
fluid turbulence pattern which appears frozen to the particle as it passes
through eddy after eddy. The relatively high density particles are essentially
unaffected by the fluid velocity. A neutrally buoyant particle with zero free fall
velocity, on the other hand, tends to become trapped in a single eddy (if the particle
is small enough) and is strongly affected by the fluid turbulence.

One can immediately see that size and density influence particle motion
simultaneously and that at extremes either may become dominant or negligible.
Another important parameter which acts at the same time as particle density and

size is the state of the fluid flow field.

2.4 Fluid Flow Field

The characteristics of the fluid flow field stroﬁgly influence particle
motion. If the flow is stagnant, then the fluid forces from velocity fluctuations
and mean velocity (bulk motion) are zero. The particle is solely under the influence

of external forces and its frictional drag with the fluid. The particle trajectory
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is essentially linear when governed by an external force such as gravity.
Particle size and density are important as they contribute to the frictional
drag force exerted on the particle by the viscous fluid. If the flow is
laminar then we again expect the particle trajectory to be linear, governed by
the fluid velocity, external forces and friction. If welmove in a frame where
the fluid velocity is zero, then the laminar flow case reduces to the stagnant
case. This reference frame is called the Lagrangian frame of motion. Now if we
consider a flow field in which fully developed turbulence exists, then the
particle trajectory is a random path.l The mean motion is still governed by
the external force, bulk fluid motion and friction between the particle and

its surrounding fluid. However, in addition to this mean motion there is
superimposed a particle motion as a result of particle's response to the

random fluid velocity fluctuations. The trajectory of the particle is no
longer linear but an irregular random path deviating in a dispersive sense from
the mean fluid motion.

In the quiescent and laminar flow situations the fluid velocity field is well
known.. It is unchanging in time. For the case of turbulent flow, the instantaneous
velocity fluctuates about some mean quantity which is assumed to be unchanging
in time. This type of turbulent flow is called stationary. If at all spatial
points within the flow field the mean velocity and the structure of the velocity
fluctuations are the same, then the flow is said to be homogeneous. If the scales
and intensity of the turbulence are the same along different orthogonal coordinate
axes, then the flow is called isotropic. Due to the random nature of the turbulent
flow field, it is best described by using statistical quantities. A quantitative
development of statistical particle motion in a homogeneous, isotropic and stationary

turbulent flow field is developed later in Chapter three.

——t
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2.5 Discussion of Principal Experimental Results

We have qualitatively presented above a discussion of those parameters
effecting particle motion. Throughout this discussion it has become apparent
that the various parameters influencing particle motion act in conjunction
to govern particle motion. It has also been noted that there are extremes
where the effect of one parameter dominates all others.

The phenomena of particle motion in a quiescent or laminar flow field is
essentially a one-dimensional problem. However, due to the fact that fluid
turbulence is a three-dimensional phenomena, we observe, for suspended
particles, motion in all three coordinate directions. If we couple these
three dimensional turbulence effects with the effects due to variations of
particle parameters, we obtain a complex particle-fluid motion problem.

It is observed that some particle parameters dominate the motion in the
axial direction and other particle parameters dominate motion in the lateral
directions. To illustrate this point we consider two sets of experimental
results: (1) An experiment performed with particle size being held constant
(at 5mm diameter) while parameterizing on particle-fluid relative density
and (2) An experiment utilizing relatively constant density particles of
different sizes (2mm’through 6.5mm diameters). All particles were tested
in the same turbulent flow field. This turbulent field was the stationary
and both moderately homogeneous and isotropic "core'" region of a vertically
oriented pipe flow. Cylindrical coordinates were used to characterize the
fluid motion and the particle trajectories: axial (z), radial (r) and
azimuthal (8). The quantity by which particle motion between the two
experiments is compared is the particle velocity autocorrelation function.
This is a statistical quantity characteristic of turbulence structure which

measures the degree to which the particle velocity at the present time is
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similar to the particle velocity at previous times. The particle autocorrelation

function is mathematically defined for the axial (z) direction as

F\;;Z"): up,;(i) U{,,}(t*z') (2.5-1)
’ U )

where the overbar is a long time stochastic average and T = delay time.
The quantity up,z(t) is a time series of the particle axial velocity component
viewed from a reference frame in which the mean particle velocity is zero.
(This reference frame is similar to the Lagrangian frame of the fluid but
differs slightly since the mean particle velocity and mean fluid velocity are
unequal unless the particle is small and neutrally buoyant, thus behaving
as a small fluid element.) We shall employ this pérticle velocity autocorrelation
function as a statistical measure of the behavior.

Figure 2.5-1 shows the axial particle autocorrelation function for the
varying particle density experiments (FFP-Series) described earlier. We
note as the particle density tends toward the fluid density, that the auto-
correlation function tends toward that of the fluid. Since, the size of the
particles is constant, the effect of that parameter is suppressed. The fluid
field is the same for all particles so effects from variations in fluid |
turbulence are also removed.

Figure 2.5-2 shows the radial particle autocorrelation function fof the _
FFP experiments. No effects of the varying particle density are observed.
However, the spatial scale for lateral turbulent velocity fluctuations is
much less than the corresponding axial space scale estimates by Howard (1974)
and measurements by Sabot, Renault, and Compte-Bellot (1973) indicate that

the lateral spatial microscale of the fluid turbulence may be 2 to 5 times

smaller than the axial spatial microscale of the turbulence. Thus, even
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though the particles have different densities, their relatively large size
with respect to the size of the lateral turbulent scale dominates their
motion. The conclusion is that in the lateral direction the response of
the particle is limited by its size.

To be able to visualize the effect of particle size we examine the results
of the second experimental series (SP-Series) where different size particles
were tested in the turbulent flow system. Figure 2.5-3 shows the axial
autocorrelation function for various size particles with relatively simiiar
densities. Here we observe for particles of similar density that the axial
response is the same regardless of particle sizes used in this experiment.
These particles are all smaller than the axial turbulent spatial microscale
which is estimated by Howard (1974) to be about 1.7 cm. Thus, there should
be negligible effect of size because the particles are all small enough to
respond well to the axial component of the turbulence structure. We conclude
for particles of sufficiently small size, that dénsity will govern their
response to the axial turbulence structure.

For the lateral turbulence structure we observe some change in particle
response for smaller particles as the particle size approaches the spatial
microscale of the lateral component of the fluid turbulence. Indeed, this
is verified by Fig. 2.5-4. As the particle size is reduced, the particle
autocorrelation falls off much faster indicating (by its rapid drop off and,
smaller area underneath the curve) that the particle is able to respond to the
higher frequency fluctuations in the lateral turbulence structure. In
addition the ratios of the rms fluctuating velocities in the radial—to—akial
and azimuthal-to-axial both increased as the particle size decreased from
6.5 cm. diameter to 3 cm. and 2 cm. diameter with approximately constant free

fall Reynolds number for all particles.
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From the experiments conducted it was shown that particle motion is
effected by particle size and density. Furthermore, these two effects occur
simultaneously and one or the other may become dominant depending upon the
size of the turbulent scale to which the particle responds.

For detailed results from the experimental program the reader is referred
to the theses of Meek (1972) and Howard (1974) in which tabular and graphical
presentations of the data are presented. For convenience, however, several
of these data are presented in Appendices: A - "Fluid Measurements' and
B - "Particle Measurements'. In addition the Appendix C - "Data Processing
Techniques'" includes detailed discussion of the numerical procedures employed

to extract these data.-
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E 3. ANALYTICAL MODEL DEVELOPMENT FOR PARTICLE MOTION

3.1 Introduction
As explained in chapter one a basic goal of these extended, in depth studies
s of individual particle motion in a turbulent fluid flow has been to deVelop a
mathematical model of such motion. Particular emphasis has been placed upon the
development of a model that is detailed enough to well represent the underlying
% physics inherent in the process while at the same time being capable of providing

straightforward engineering calculations. To this end initial analytical effort

was directed toward an understanding of non-Stokesian effects (Jones, et al. 1971)
; of importance in typical two phase flows which confront engineers in the fiéld.'
Use of expansion technique coupled with Chao's (1964) earlier work furnished a
basis from which non-Stokesian behavior could be predicted and accounted for.
The next topic pursued (Jones, et al. 1972) was that of particle dispersion in
; a homogeneous, isotropic turbulent fluid. Extending the ideas of Wardell & Koefod-
Hansen (1962) to include particle motion and combining the results with the earlier
non-Stokesian work readily calculable expressions detailing the dispersion of
; non-Stokesian particles was developed. Predictibns of this homogeneous theory
compared favorably with experiments performed both in air and in water. The most
:g! recent analytical effort has been directed toward an understanding of inhomogeneous
) and anisotropic effects. Such effects are specific to the two-phase system under
consideration-pipe flow in the present case. However, the present effort will emphasize
; development of a generalized phenomenalogical formalism applicable to typical
engineering situations. Rapid prediction of engineering accuracy will be the guiding
feature in its derivation. Consistent agreement with experimentally observed
results, summarized in chapter two, has been applied throughout these developments.
Indeed, the direction of analytical development and experimental program was designed

to provide maximum understanding of the physical phenomena.




22

3.2 Homogeneous Flow

In the earlier study done on non-Stokesian particle motion in homogeneous
turbulence (Jones, et al. 1972) it was found that the basic physics describing
the phenomena could best be understood if consideration was initially directed
toward the spatial-wavenumber domain rather than the more natural time-frequency
realm. Since a somewhat similar description will be employed in analyzing in-
homogeneous behavior a brief review of the previous work will prove useful.

As indicated the homogeneous theory is based primarily on a Koefod-Hansen
(1957) extension of Taylor's (1921) pioneering work on diffusion by continuous
‘movements. It considers only individual particle motion viewed from a Lagrangian
reference frame in which the average fluid velocity is zero. No particle-
particle or particle-wall interactions are dealt with but rather the particle-fluid
interaction is assumed to dominate. Non-Stokesian behavior is taken into account
through the application of the theory presented by Jones, et al. (1971) and Jones,
Ostensen and Meek (1973).

The dynamical equation of motion describing particle behavior in a turbulent
fluid flow was first derived by Tchen (1947). Modifications of Tchen's original
equation to more correctly include.pressure effects was made by Corrsin and Lumley
(1956). Lumley (1957) showed that the resulting equation, when viewed in its most
general sense, had incorporated within it on ""essential non-linearity" due to the
neéessity of evaluating the fluid's velocity field at the particle's unknown
position. As such, theoretical attempts at solving the equation have centered
about particles constrained to remain throughout their history within a given region
of strongly correlated fluid (i.e., an eddy). By such means the equation of motion
reduces to one of time dependence only and the "essential non-linearity" is circum-

vented.
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At first sight, solutions of such a simplified equation of motion appear to
be of somewhat limited value. Many of the particles of practical interest may
not remain within a given region of correlated fluid, but rather migrate, due to
their free fall, from one region to another. However, in a statistical sense it
is of little note whether the particle is constrained to remain within an eddy by
arbitrarily setting its free-fall velocity to zero or whether it is allowed to
move from one eddy to another. In the one case the particle experiences the
distribution of turbulence states by remaining within an eddy which undergoes
the distribution during its history; while ih the other case the particle experiences
the turbulence distribution by moving from one region of strongly correlated fluid
to another. Assuming, in the latter case, that the particle's response time is
small compared to its transit time, the average space scales of correlation are the
same in both cases, being determined by the particle's inertial characteristics
and the underlying fluid turbulence. The time scales of correlation are not
the same in the two cases, however, due to differing convection velocities. Thus,
solutions of the simplified equation of motion may, if properly interpreted, be
used in the calculation of the sought-for particle velocity autocorrelation.

From the general theory of Wiener-Kinchine, it may be shown that the particle's
velocity autocorrelatibn can be expressed in terms of a normalized particle energy

spectrum, FP’ L(w) :

RP,L(T) =/'L;,e(w) Cw’(wﬁd‘“ (3.2-1)

where w is the circular frequency. The early work of Soo (1956), Friedlander
(1957) and Chao (1964) suggests that the particle's energy spectrum can be ex-
pressed as a function of the fluid's Lagrangian energy spectrum through a so-called
particle response function. This response function is derived from the particle's

simplified equation of motion [see Soo (1967) for a description of the derivation]
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and is, therefore, strictly applicable to zero velocity free-fall particles
constrained to move within a single correlated region of fluid. Thus, use of an
energy spectrum determined with a response function derived for zero free-fall
velocity particles requires some adjustment of Eq. (3.2-1) to account for non-zero
free fall and the subsequent movement of the particle from one correlated region
to another.

Motion of the particle will greatly affect its observed behavior in the time-
frequency domain. To remove this dependence it is necessary to move into the

wavenumber realm:

1( = ‘{Z/)" (3.2-2)

where k is the wavenumber, w the corresponding frequency, and A

P

convection velocity in the coordinate direction considered. Due to the equality

/
is the particle's

of space scales in the two cases, normalization conditions on the particle energy
spectra imply similarity of the spectra regardless of whether the particle is
arbitrarily confined to a region of strongly correlated turbulence or whether it
is allowed to roam about. Consequently, non-zero free-fall effects may be properly
incorporated by transforming from a given state in the wavenumber domain, /;;i(zh”
into the frequency realm.

For the frame of reference considered in this work the instantaneous particle

velocity in a given coordinate direction may be expressed as

Zf%ié(t) = U ,‘-(z‘) +7€- (3.2-3)

where f: is the ith component of the particle's free-fall (or any deterministic)
t
velocity. For a particle arbitrarily constrained to remain within a given eddy

this free-fall velocity is set to zero. As a consequence such a particle has,

~

PR
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when viewed from a reference frame moving with the mean motion of the fluid, an

observed frequency in the ith coordinate direction of
)Q !
w, = KU, (3.2-4)
o] e .

where k is the space-related wavenumber. If the same particle is allowed to

move about from eddy to eddy it has an observed frequency of

w = kZ/l;/,_ (3.2-5)

in the ith coordinate direction.1

With this equivalence in mind Eqs. (3.2-4) and (3.2-5) may be combined,

LT
w =Wwy I+ —& (3.2-6)

UP,;
which can be seen to reduce to (,Uo as )Q—)O and to L(go_—.: 7({ 7[07' £>)L(f:‘

Normalization conditions on the particle's energy spectrum require that the nonzero

resulting in

free-fall velocity spectrum be related to that of the zero free-fall velocity

spectrum by

(oua)
| 1— ’[/u,,s

73
;ﬂt / {%f(;,i ’ | (3.2-8)

(3.2-7)

Identifying

1
In this development it is to be understood that w is specific to a selected
coordinate direction (i = 1, 2, or 3).
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the expression for the particle's velocity autocorrelation becomes:

o0

RP»i(?) = F;’,L((,uo) cm(ft ) Z‘) dw, (3.2-9)
—c0
Determination of this autocorrelation thus reduces to a determination of a
proper zero free-fall energy spectrum which is determined in part from the
particle's equation of motion. Extensive consideration of this function has
been made by Jones et al (1971, 1972) and by Meek (1972) and will not be repeated
here.

Subsequent analysis using a derived expression for F ,i(wo) shows that
particle motion in an homogeneous turbulence can be characterized by three
parameters, two involving inertial effects due to particle size andldensity
and the other parameter reflecting free fall effects. Of the two inertial
parameters one, designated B; involves the ratio of a fluid sphererfo that of
the same size solid sphere. The other parameter, designated £, is a ratio of
the response time of the particle (as determined by its inertial characteristics)
to the fluid's characteristic time of correlation in the Lagrangian frame. The‘
third parameter, designated Ti’ describes the loss of correlation a particle

experiences as it moves from one region of strongly correlated fluid to another.

3.3 Inhomogeneous Flow

As noted earlier effective incorporation of inhomogeneous flow features into
the general framework of the homogeneous theory requires a rather detailed speci-
fication of the flow system and its inhomogenities. Consequently the present
work will concentrate on pipe flow in which the fluid turbulence is stationary
and homogeneous in the longitudinal or flow direction. Despite these somewhat
arbitrary constraints it is felt that the method presented can be extended to

other, equally arbitrary systems.
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Consider the pipe flow system in question divided into N equallyvspaced
imaginary annular elements. If N is large, it may be argued with some validity
that the turbulence contained within each individual element is approximately
homogeneous. As such the theory developed in the previous section may be applied
in a piece-wise manner to each element so that an axial autocorrelation may be

written for each.

Rf”}' {T, ]) j/%(wo) /';i(&%,/:) 60:11/4; w Zj dw, (3.3-1

Here Qz(wo) is the particle's response function derived from the particle

equation of motion (see Jones et al 1971 and 1972). Notice that insofar as the

" particle is concerned the inhomogenity of the underlying fluid flow is felt

primarily through the fluid energy spectrum characteristic of each element,
Ff z(wo,jJ. Some slight influence is also felt through 4;. The average correla-
tion experienced by the particle will thus be a function of the .amount of time

spent in each annular element

<Fgt)) Z Fog( 71 ’ o

where Té represents the fractlon of the total time, T the particle spends in

the 7 element, Normalization constraints require:

N | |
td"
- = ' (3.3-3)
5
}=I

In a pipe where radial symmetry is applicable we allow the summation in

Eq. (3.3-2) to go to an integral over the radial coordinate as the number of
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intervals goes to infinity, The amount of time the particle spends in each

region is replaced by the dimensionless radial position probability density

function.

Prob (r, r+dr) =I /D()z) c/vz (3.3-3)

where

7 = F/R | (3.3-4)

and R is the inside radius of the pipe.

Using the above definitions Eq. (3,2-1) can be written as

<RP-;(T)> =ole?P»;(z7 7) ’D(’Y) \O/’Z (839

Here F\)P;(Z‘:)Z) is the homogeneous axial particle autocorrelation function
r
determined for a given value of7z. The earlier theory for particles in the

range 0.1 < B < 3.0 predicts that for homogeneous turbulence

R)"’j (z:7) = exp (—— 2“/7;3) (3.3-6)

where Tp is the particle time constant given by

—[;’2 = ;l.’} /é“ 7 (3.3-7)

[Ty
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and gZ[’} is the axial fluid convected time scale andi is the free fall
parameter defined earlier,

For the nonhomogeneous case consideration must be made of the radial
variation of Z, and Z Inhergnt in the parameter Z is the particle éxial

/
rms velocity L(, . Little is known about the radial variation of u/b’i in
L)

P3 ,
a pipe. From earlier (WRC-58) data uﬁ" and thus fare constant to a first
order approximation. As such no 7dependence of [will be assumed. Effects
of u};} variation can be investigated later if found to be of importance.
Furthermore, QZ- is expected to be a function of the radial coordinate, 7,

thus giving the relation for a nonhomogeneous flow

T = Jyo /L

Estimates of QZ[ from the trend of data for the Eulerian time macro-
’

scale suggest (see Fig. 3.3-1) that the radial variation of the Lagrangian time

macroscale may be adequately represented by a linear fit of the form

(3.3-9)

4,00 = 4/ (ar an)

or a second order fit of the form

CZ,;()Z) = ¢7£;(0)/(ao+a,7z+az7zz) | (3.3-10)

where ao, a, , and az are fit constants to be determined experimentally and
JF (0) is the value of the convected time scale at n = 0 (the pipe centerline).
°}

Using Eq. (3.3-10)4Eq. (3.3-8) may be written as:
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7,.;(7() = Cz}(a)/!(ao+ Czl7z-f-a‘z 72) (3.3-11)

where Eq. (3.3-6) becomes

RF}(TIJZ) = exp —T;(QO+Q,;Z+Q‘27ZZ)@}(0) (3.3-12)

and Eq. (3.3-5) can thus be rewritten as

</?P;;(T)> ='O/‘F?7Z) EXP/-T!(a°+Q, 7Z+QZ Yzy%[oidz (3.3-13)

It remains now to discern an appropriate form for f%%ﬁ. The data from
experiments are insufficient to describe‘a precise form fbr'F%7). Here an
approximate form will be utilized for ;%%0.

A determination of the probability distribution for particle radial position
can be made by appeéling to the physical phenomenonfun&er investigation. Kada
and Hanratty (1960) noted a uniform distribution of solid particles in their
experiments. Indeed, fully suspended dilute two phase flows are quite often
homogeneously distributed. Assuming a uniform distribution of particles per
unit cross sectional area of the pipe, the pfbbability of finding a particle
in a radial increment d?Z about 7 is proportional f_o the annular area at7z as
seen in Fig. 3.3-2,

Thus the normalized form for the uniform distribution probability function,

IDu.(?)’ is

Ry = 2797 e



ntal Annular Area for the Modified Uniform Theory.

Increme

Fig, 3.3-2
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To accurately predict the actual experimental results from the present system
account must be taken of the experimental rejection of particle runs in which
the particle trajectory swerves out of the calibrated 'core' region of the pipe.
Runs with a mean radius near ?ﬁax’ the radial limit of the calibrated core

region, have a large probability of being instantaneously outside Zlax and thus

being rejected during analysis. The largest of the mean radii, 7[,,, appearing
in the experimental data are somewhat less than the maximum allowed radius,

Znax' If for each run a Gaussian distribution of instantaneous radial positions

about the mean 7Z

i is assumed, then the maximum mean radius seen in a histogram

2
plot will be about hax —01-, where 6';. is the variance of the? values about

7Z~. That is, about 33 percent of the runs with 77',,: Zax -G;o will be rejected

as being beyond the "core' boundary as shown in Fig. 3.3-3,

As the mean radial position 7,. moves closer to 7Z , the particle run has

max

an increasing probability of rejection. The probability of rejection is two
times the area of the Gaussian defined by(?,.,c{.), that is outside Ymax' This
is pictured in Fig. 3.3-4.

Thus,

}ﬁ?(;z)—. probability of acceptable run = (1 - prob. of rej.)

)

1 - 2(area of Gaussian outside 7 :
_ max

| -2 072—7?——7 exp[{‘rz- 77,.)2/20;,2] cf;z B (3.3-15)

or we can let 7Zr be redefined as?Z.

- 7m“xf7z 3.3-16
)C,)q(az) = er7[ . ( )

/:%(72) is shown in Fig. 3.3-5.
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Fig. 3.3-3 Probabllity of Rejection for Runs With Various Mean Radii,
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Fig. 3.3-4 Probability of a Particle Run Belng Rejected.
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"~ Thus the modified probability density for a uniform distribution of

particles with rejection criterion, /%(72), is
E—,UZ) = B(‘)z) - /DHUZ) - (3.3-17)
( ) ——/4 el"/ L———) - (3319
m (77 i al ‘

The normalization condition must again hold

Ymax ’ .
/ a(7z)d7z = ] (3.3-19)

Thus

A, = em[( 77'"”)()7””“ + C’/r) +

Oy 2

+ exP(—%ﬂax Vmaon'/_' _ %axc_;‘ -
1/—_' 1/%? (3.3-20)
Zm%/" ]

P(7Z)15 shown in Fig. 3.3-6 for some representative values of7Z ando"

By utilizing Eqs. (3.3-18) and (3.3-9) in Eq. (3.3-5):

<RP}(’Z'> A exp( ?{3)

%mx | (3.3-21)

/7@[(57_’ ex]b [(O))obz

o
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By evaluating the integral in Eq. (3.3-21) it is found after some calcula-

tion

(T)> C /% (a',or 7,,,“ (3.3-22)

A$ - ot )}-

[ § o2 -5

and |
C=/4m 2 o; ex :z—a—'-’——)ex QVoex (3.3-24)
AT p(%m) p (@)
and
a’ = _Ta'f/?G; (3.3-25)
J%, (0

/
The above equations are valid only for T#0o0rQ { 0. The integral in

Eq. (3.3-21) must be evaluated in a different manner for the case Z°= 0. For

X

0 in Eq. (3.3-21):

< (O)> /4/72 er (—7@—2) 0’7 (3.3-26)
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But this integral is 51mp1y'/q as defined by Eqs. (3.3~ 19) and (3.3-20).
Thus, </?P}(O)) = 1 as it should be for an autocorrelation.

A comparison between theoretical predictions for the axial particle auto-
correlation functlon /?) (Z? 1s shown in Fig. 3.3-7. The curves shown
are based on calculatlons from Eq (3.3-6) for the homogeneous theory, and
Eq. (3.3- 22) for the modified uniform theory. Typically observed experimental
values'were used for the input parameterscg;ﬂv) Aicrj é?-)cr; and /7 . The
modified uniform theory predicts a smaller time macroscale than the homogeneous

theory. This is an important result especially for particles with low free

fall velocity and will be discussed further.

3.4 “Anisotropic Flow

In'the case of anisotropic flow systems prediction of particle behavior
is complicated by the rather specific relationship of the anisotropy to the
flow system involved. An approximate engineering model will therefore be
proposed to incorporate anisotropic effects. Emphasis will be placed on

formalism rather than application to a specific case.

From the general theory of linear regression it is known that determination
of correlation between two quantities allows a statistical inference of one

from a knowledge of the other. Tn the present context this involves Lagrangian

particle motion:

U, - S~ iup'» .4 @40
Gy

This ‘expression must be regarded as purely a statistical one and cannot be

expected to provide information beyond that implicit in linear regression. If

velocities are normalized to their RMS values Eq. (3.4-1) becomes:
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where the priﬁé'dénotes normalization and Rij is the zero lag time velocity
correlation matrix. From the form of Eq. (3.4-2) it is evident thatrthé velocity
correlation matrix serves (in a formal sense) to provide a linear transforma-
tion from one set of velocity components; refefred to a giVen set of basis
vectoré, into another set of components referréd to the same bésis. Indeed
the transformation inﬁdlved is an orthogonal one preserving‘the length of
the originai vector. Using standard techniques of matrix mechanics it is
possible to perform a principal axis transformation to diagdnalize the
velocity correlation matrix. Re-normalization of the resultant matrix produces
a matrix which is formally similar to that for isotropic flow.

To furnish an engineering approximation to incorporate anisotropy it.
is suggested that the various components, of particle correlation derived
previously for isotropic flow be substituted intp this matrix and an inversion
of the above process be applied. Such a step implicitly assumes the identity
of the principal axis matrix to be ‘that of isotropic flow. It further requires
the transformation matrix used in the inversion process to be a constant as a
function of lag time. Both of these assumptions in all likelihood are
approximate and certainly cannot be rigorously justified. However, used
as rough predictive devices they should prove useful. A further approximation
that should also be of use is that ofvinférrihg the transformation matrix
from knowledge of the more readily obtainable‘fluid velocitylébrrelation matrix.

Although not as accurate such a procedure should provide an acceptable measure

[

[N
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of the actual transformation matrix.

An unavoidable shortcoming of this approach, related directly to its
empiricism, is the inability of such a model to include effects due to
particle size. Once the transformation matrix is known the isotropic matrix
can easily be inverted to allow prediction.of the anisotropic situation.

However, since this transformation is dependent solely upon the structure

-of the anisotropic flow no further effects due to particle size beyond those

included in the isotropic expressions can be incorporated. Recent experimental
evidence presented in Chapter Two suggests size to be a definite factor at
least insofar as lateral velocity correlation is concerned. The inability

of the present approach to include such behavior must be regarded as an

indicator of its limitations.
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4. MODEL VERIFICATION AND APPLICATIONS

4.1 Prediction of Particle Free Fall and Inertial Effects

In examining the nature of the combined influence of free fall velocity and
inertial effects, we have developed a model which incorporates these through
the parameters TBi’ f and £ introduced in Section 3.2. The FFP series provides
experimental information against which the model is compared. In addition, other
experimental data in the open literature enables a wider range of parameterization
verification of the model.

For the case in which a uniform axial drift velocity, f; an isotropic,
homogeneous. fluid turbulence fluid field, uﬁi; a particle response function, Q(wo);
and a range on the particle density parameter of 0.1 < B < 3.0, the theory developed
by Meek (1972) and presented in Section 3.2 is valid. Equation (3.2-9) can then be

approximated directly as
@,L(’Z“) = exp(“z/z;.) (4.1-1)

where 7;': — ':Zi /; (4.1T2)

and ;2 is given by Eq. (3.2—8). For the full range of the density parameter
(0.0 < B < 3.0) the simplified result of Eq. (4.1-1) does not hold for 8 < 0.1
and the moré detailed results of Meek (1972) should be consulted.

By following Taylor (1921) the dispersion for‘the various i-directions can

be obtained using RBi(T) in the expression

t AT
2 _ 52 / (4.1-3)
WACIES T F.(t)drdT

Substituting Rpi(T) from Eq. (4.1-1) gives the axial particle dispersibn as
1

ittt

£ Z
XP',}(H =z uﬂ; 7;} L- 7;} </—exp(—f/7;;)) (4.1-4)

i ih

()

S
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Assuming the turbulence to be isotropic the corresponding lateral dispersion

is given by

Xp,r'(t):)(hg(ﬁ ;7/;/{‘ P}{/—exp(%‘/j;}))J (4.1-5)

where

RP,,(?? = RP‘Q(T’) = (/ - 27;;) exp( /7/;‘}) (4.1—5)

Meek and Jones (1973) have presented the parallel development for small,
heavy particles where B0 but fi is finite. The corresponding correlation and

dispersion relations in the axial and lateral directions are:

e[ CoR( VT)] e

orl?) = “)'-‘7%/(’”@7;9)“/’(“?7;})—

-6~ e) ex/o(-—%g?‘,))] '—
Fi{f) = [[f Py Pi / (- 275))]
-«5[7%"5 (rertoml)
. Xott) = Kore) = Lea T Z”;/[ P R) - N

£ [ )]
&;2;/&5 = //(l‘f”g) . (4.1-11)
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A direct comparison of these predictions with lateral correlation and dis-
persion measurements presented by Sﬁyder and Lumiey (1971) shows good agreement.
Figure 4.1-1 shows the lateral correlations for sets of their experimental data
in comparison to predictions by Eq. (4.1-8). Although perfect agreement is lacking
the trends and functionalibehavior of the predictiohs are correct. The corres-
ponding dispersions predicted by Eq. (4.1-10) for two of their sets of data are
compared in Fig. 4.1-2 and excellent agreement is observed. Thus, employing such

a predictive scheme with reasonable estimates of the fluid turbulence structure

(ufzZ andcgéz) and of the particle characteristics (a,B,fZ) should provide ac-
) ' N

ceptable dispersion predictions for many practical applications. Since
isotropic turbulence has been assumed, the lateral Lagrangian integral time scale
“for the fluid turbulence structure,cjgr

To demonstrate the effects of crossing trajectories brought in by finite

» 1s half the corresponding axial value,éj%z.

free fall velocities, examinations of the ratio of particle-to-fluid integral
time scales employed is useful. Defining the integral time scale for the particle

as

t

7/;. =O//E\i’[(z«)dz~ | (4.1:12)

the ratio of scales for the axial direction is given by

e

7;; /CZ,; ___ (H-g)/(l-f- é}&; | (4.1-13)

This relation shows that as f increases the particle integral time scale rapidly

decreases. The inertial effects, through £, tend to increase T’Z and even
. )

dominate the relation when f 2 up2z . Figure 4.1-3 shows the predicted ratios
. > N

for the three cases of Snyder and Lumley considered earlier and demonstrates the

need to consider the inertial effects in these low R cases.
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Fig. 4.1-3 Comparison.of Analytical Predictions of Integral Time Scales with Measurements
of Snyder and Lumley (1971): Solid Line, with Inertial Effects; Dashed Line,

Neglecting Inertial Effects.
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For the range of B near unity, where the free fall parameterization can
readily be varied with particles of a few millimeters diameter, both the FFP
and SP series data cén be used to‘éhéck the proposed models fdr particlé correla-
tion, dispersion and integral time scale. The data obtained by Howard (1974)
is presented in Appendix B in which the FFP and SP series REi(T) for axial,
radial and‘azimuthal direction are compafed for each series. The corresponding
computer presentation of other statisticél quantities is also included.

To illustrate the agreement of Meek's theory with experimental results
the axial particle autocorrelation is compared with data for FFP1 including a
comparison with an additional evaluation witﬁ the radial distribution of particles
included (Modified Uniform theory) which has béen discussed in Chapter 3. (See
Fig. 4.1-4). Due to the relatively large size of the particle to the lateral
turbuience scale the use of isotropy in the theoretical prediction of the lateral
particle correlations is in significant diségreement with observations. Figure
4.1-5 compares predicted and observed axial dispersion for FFP1 and shows excellent
agreement. This was generally found to hold for axial dispersion for positive
free fall particles but not for large negative free fall cases. The specific
reason for this lack of agreement is not resolved.

Results with B = 0.75 and B = 1.1 and with 3 mm and 5 mm diameter particles
have been attempted in this apparatus, but difficulties with either very rapid
transit times or very long transit times for the two B-values, respectively, have
prevented procurement of reliable data with adequate resolution. Some preliminary
data for a 5 mm particle with B=0.73 are included with the F F P series data in
Appendix B. But inadequate resblutidn prevents establishment of specific trends

from being affirmed for the extension of the B parameter.

A
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4,2 Prediction of Particle Size Effects

The theory developed in Chapter 3 basically deals with the prediction of
particle motion in the axial direction. We have seen in Chapter 2 that
turbulence is a three dimensional—phenoﬁena with three diﬁensional structure.

For the lateral directions it was more difficult experimentally to fulfill the
theoretical requirement that the particle must be small compared with the micro-
scale of the turbulence thanvwas the case for the axial direction. If the
particle size does not fulfill this requirement, what method can be used to help
predict particle motion? It is believed that as the particlé size becomes smaller
and smaller, its responsehbécomes more like a fluid particle. For the axial
direction and for particles of finite size but smaller than the turbulent micro-
scale, the size variation of particle motion enters in the parameter o. For
the case of particles somewhat larger than the fluid spatial microscale (as
occurred for lateral directions where scales‘are smaller) we make recourse to
experiments to yield empirical data.

Data from the SP-Experiments are plotted in Fig. 4.2-1. Table 4.2-1 provides
background time scales. We can see that our expectations are verified. As the
particle size becomes smaller [a‘;é’z gets larger) the particle time scale ratio
7;,Z/T;,r tends toward the limit expected for fluid particles. The data of Sabot,
Renault § Compte-Bellot (1973) suggests for turbulence in a pipe with pipe Reymnolds

number of 1.35 x 105 that the fluid time scale ratio is

%}/%r = 4.8

as shown in Fig. 4.2-1. An empiricle fit to these data yields

Ls/ T = 4.8 - 3.0 exp(-.26 x )
Thus for a given size, &, and fluid macroscale,é}% g We may calculate the

2 from the theory as developed in Chapter 3,

3

ratio 1;,2/15,r' If we estimate T;
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r o :
FLUID ELEMENT LIMIT: RENAULT, SAOT AND
X COMPTE-BELLOT (I973)

oS

Figure 4.2-1 Ratio of Axial-to-Lateral Integral Time Scales
for Fluid and for Particles.

Table 4.2-1 Axial-to-Lateral Particle Integral Time Scales

: ‘ *
Particle | a | ot_ejf)z_ T IT.
SP2A,C,D (6.5mm) .25 | .42 2.0
SP3 (4mm) .65 | 1.08 2.7
SP4 (3mm) 1.16 1.93 3.0
SP5 (2mm) 2.61 4.33 3.8
FFP (5mm) .42 | 70 1.9

* -
J-, = 1.66 seconds for Re_. _ = 50,000
fz pipe

[N,
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we may also estiﬁate 1;,r’ a paraméter important in predicting the lateral
dispersion of the particle. Thus, we are able to empirically predict the effect
of particle size on lateral particle dispersion. This is significant in
engineering applications particularly to environmental problems in which the
spread of plumes in the‘atmbsphere‘and in lakes and rivers is a primary concern

in meeting dissipation and dilution standards.

4.3’ Applications to Related Problems

In the controlled experiments detailed observations of fluid and particle
turbulence were obtained. This will be the exception in engineering applications
whefe much of the exiéting fluid turbulence field is not measured. However, in
the development of the model, only a few key parameters of the turbulent field are

required. In general, good estimates can readily be made in boundary layer flows,

in open channel flows and in plumes for turbulence intensity and integral scales.

The types of particles with their size distribution are also usually known. These
are the only ingredients which are needed to predict dispersions when the form

of the particle autocorrelation functional is taken to be a single parameter
exponential. The size and shape parameterizations presented above give good
indication of the range of particle sizes for which the model can be applied with

accuracy.

4.4, Procedure For Predicting Dispersion
From the definition of dispersion given by Taylor (1921) and its modification
by Kampé€ de Fériet (1939) we obéerve that pafticle dispersion is directly related

to its autocorrelation function

X;L'(t)' Z&Zi/(z‘— Z‘) /Cﬁa,g(?) dT (4.4-1)

it
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For very short times compared to the particle time macroscale, t << Tpi we
: v )

note that R (1) ¥ 1 and thus,
; ] ..
Xp,i(ﬂ U t , t << 7;5 (4.4-2)

Pi
For times very long compared with the particle time macroscale we have

[/

IR

t >> T . thus
pi

| .
X;‘-(z‘) = zul z‘/F\’,L.uv)dz* @42

or

z ‘ ‘ |
| p,c'(t):z Zu,:i ¢ 7;.,; ) t>>7;( | (4.4-3)

For axial dispersion (in the flow direction) the theory of Meek (1972)

enables Tp.to be estimated from

f[;)} — Qj£} /[ (4.4-4)

/ = [’ +(€@7Va | c4-’4-'53

This enables us to calculate X;z(t) for both long and short times compared to

where

the particle macroscale. For intermediate times we use Meek's relation

| F\DP,}(Z“) = exp(—Z‘/’];}) (4.4-6)

to calculate X; (t). An example of such dispersion is shown in Fig. 4.1-5.

For dispersion in the lateral direction, the theory of Meek does not apply

directly. However, we can estimate the value of the radial time macroscale, Tpr’
’
from measurements of the spatial structure of our turbulent flow field. We note that
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To= WA T/E) e

where spatial integral scale ratio, Arr/Azz’ is determined by analogy with
measurements in a turbulent flow similar to the flow being considered. The

is likewise estimated or measured, and T ’ is estimated by

. 2 2
ratio u,_ /u
fr "7z ¥

Meek's theory from the Lagrangian fluid time macroscale.

Thus, lateral dispersion is given by

z —Zz 42
X,,.(t) = U;,, I, < 7;,, (4.4-8)

t]

—
X.,.(t) = 2 US, i’?,:,. > 7;m (4.4-9)
and

4
/2 —
X,r(z‘) =2 L(ﬂzr f(z‘—Z“) E?D’r(zf) JdT (4.4-10)

for the intermediate times. The functional form for Rpr(T) is not known at
?

this time. However, one possible estimate would be

RP,‘;(’C') = exP(— Z’/7;r) | | (4.4-11)

The drawback to this estimate is that it has no negative correlation loop commonly

observed in lateral correlations. Thus, dispersion should be overpredicted by

this assumed form for R__ (T).
Br

It must be noted that in all cases it is assumed that the size of the
particle is at least several times smaller than the microscale of the turbulence.
If this condition of smallness is not met, then the lateral dispersion would increase

because Tpr would increase. Howard (1974) has verified this behavior by experi-
4
mental evaluation of dispersion for various size particles.
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For negatively buoyant particles, where Meek's theory seems to fail, available
experimental results indicéfe that dispersion is approximafely equal in both the
lateral and axial directions. The time scale for negatively buoyant particles is
found to be less than that of positive free fall particles of the same free fall
Reynolds number by a factor of 0.6. Further research into the behavior of the
negatively buoyant particles is necessary- to uncover the basis for their unique

behavior and to determine appropriate procedures for estimating their dispersion.

[SUS———)
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5. SUMMARY AND CONCLUSIONS

The three phases of this research stddy have primarily emphasized the
behavior of single particles suspended in a turbulent fluid. This work felates
directly to dilute suspensions of small particles where particle-particle inter-
action is negligible and where particle loadings have negligible influence on
the fluid turbulence structure. The results of the study, therefore, form a
base to which cases with finite particle loadings can be compared. The establish-
ment of such a base study has been accomplished with this study. |

Influence of particle free fall velocity, inertia, size and shape have
been studied. Except for particle shape, analytical modelsvhave been developed
in which the physical characteristics of the particle and the structural character-
istics of the fluid turbulence field are incorporated. These models have been
tested with experimental data obtained in studies here in water and with experimental
results reported in the literature for other fluids. Comparisons have been pre-
sented in Chapter 4 which showed general confirmation of the model.

In the experimental study the effect of particle shape for fixed volumetric
displacement, using spheres as the base, showed no discernable variation between
spheres, cubes and tetrahedrons. For most small particles it is concluded that
basing their physical parameters on the displaced volume and density of an equivalent
sphere is a good approximation.

Studies on the effects of particle size showed that, for reasonable agreement
between model prediction and observed behavior, the particle diameter must be

several times smaller than the integral length scale of the turbulence field.

" However, in cases where the axial and lateral scales of turbulence differ substantially,

the predictions of particle behavior in the direction which satisfies the size —
scale criterion are found to be in good agreement with observations where as in

the direction which violates this criterion substantial disagreement (under prediction)

occurs.
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Parametric variation of free fall (heavier than fluid) particles the
analytical model was capable of accommodating these crossing trajectory effects.
However, currently available experimental results for negative free fall (lighter
than fluid) particles reveal significant discrepancy between observed and pre-
dicted behavior. No rational explanation has been developed to explain this
observation.

Partiéles with substantially different inertial levels than the equivalent
fluid particle have been studied. Only experimental cases in which the particle
density exceeded the fluid density have been studied. In these cases good agree-
ment was found between model predictions and experimental observations.

For céses in which the particle drag coefficient substantially differs from
the Stokes! (viscous dominated) case, a means of accounting for the deviation
between them has been developed by Jdnes, Ostensen and Meek (1973).

| The research has also provided a unique set of experimental data of specified
accuracy with well controlled and documented parameterization of particle parameters
and fluid field structure. Because of the detailed statistical structure in-

cluded in the data, their further use in model development and testing is anticipated.

Preliminary use has been made in extending the analysis to account for non-homogeneous

fluid turbulence field structure. It is also anticipated in future work on non-
" dilute suspensions that the observation of deviations of particle statistical be-
havior from the single particle case will be important in model development for
: twé—phasé flow cases.

To meet the practical objective of these studies, an engineering model has
been developed and tested which predicts the behavior of particles in dilute

suspension in fluid turbulence. Only the prime features of the fluid turbulence

(intensity, u%i sand convective integral time scale, Tﬁi)’ the particle physical

parameters (diameter, dp’ and relative density}pp/pf) and particle free fall velocity

PR——
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(fi) are necessary inputs to the model. It has been shown that for most practical
applications these quantities can be readily estimated or measured. Thus, dispersion
of particles emitted from stacks into the atmospheric boundary layer, of sand or
other suspended particulate in streams and of water droplets from spray nozzles or
from cooling towers can be predicted from this model. Such predictions are of

prime importance in the areas 6f water pollution via sedimentation, particle
transport and oxygenation as well as in atmospheric dispersion. The latter relates
directly to methods prescribed by the Environmental Protection Agency for evaluating.

the behavior of atmospheric emissions.
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APPENDIX A: EXPERIMENTAL FLUID DATA

Understanding underlying turbulent‘fldw field in which the pérticles‘mOVe
is of major'importance in predicting particle motion. For this reason we include
some important measurements made in the turbulent pipe flow at a Reynolds‘numbér
of about 50,000 which was used during all particle experiments.

The mean axial fluid velocity profile is shown in Fig. A-1 compared with the

results of Laufer (1954). Figure A-2 shows the axial fluid turbulent intensity

_profile in the pipe as well as radial and azimuthal intensity obtained by Burchill

(1970) in fully developed pipe flow at Re = 50,000. The core flow used for
particle measurements is the region from the pipe centerline to a radius of 7 cm

or r/R = 0.76. The fluid convected frame time macroscale,c;7 is shown in Fig. A-3,

fz
Radial variation of the axial fluid space macroscale Azz, is shown in Fig. A-4. These
measurements were made with two hot film anemometers separated axially in the pipe
flow as described by Howard (1974). Corresponding measurements for radial separation
of the two probes gave Azr for probe separations about r/R=0 and r/R=0.276 of

0.476 inches and 0.61 inches, respectively. The Eulerian time macroscale and micro-

scale are presented in Fig. A-5 as taken by Meek (1972).
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Fig. A-2. Radial Variation of Eulerian Fluid Turbulence Intensities
in Fully Developed Pipe Flow (Burchill, 1970) and in the
Test Section (Meek, 1972).
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APPENDIX B: EXPERIMENTAL PARTICLE DATA

This Appendix presents particle data obtained by Howard (1974). The earlier
data of Meek (1972) as well as the data for the shape studies have been presented
earlier by Jones et al. (1972) and are not repeated here. Tables B-1, B-2,

B-3 and B-4 present the physical properties, quiescent behavior, statistical
behavior (including mean, variance, macroscale, microséale and model structure)
of the particles in the FFP and SP series experiments. Figures B-1 through B-11
include the ensembled autocorrelations and spectra for each of the series of
particle exﬁeriments. A comparison of the sz, Rpr-and Rpe for each series is
included in Figs. B-12 through B-17. For further details the reader is referred

to the theses of Meek (1972) and Howard (1974).




_ Table B-1: Physical Properties and Qulescent Dynamic Behavior for the FFP and SP Series

Reynolds Quiescent Quiescent ,Approx; Size Density

Series Diameter Density  Number Free Fall Vel, Drag Coeff. Weight Parameter Parameter
d(mm.) PP( g/cc) ReQ | fQ( cn/sec) CD,Q (mg) ot (sec™t) ‘6

FFF1 5 1.0077 135 2.35 0.91 65.5 0.42 - 0.,9949
FFP2A 5 0.9962 -85 -1.48 ' 1.12 65.5 0.42 1.0025
FFP2B 5 0.9951 -101 -1.76 1.03 65.5  0.42 1.0033
FFP3 5 0.9997 . -13 -0.23 3.57 65.5 0.42 1.0002
FFPL 5 1.0005 21 0.37 2.56 ' 65.5 0.42 0.99956
FFPS 5 1;0038 86 1.50 1.11 65.5 0.42 0.9975
FFPS 5 . 1.55 1498 26.1 ~0.54  101.5 0.42 0.7317
SP2A,C,D 6.5 1.0065 198 2.65 0.79 44,0 | 0.25 0.9957
SP3 L | 1.0142 130 2.83 0.93 33.6 0.65 0.9906
SPL -3 1.0256 110 3.17. | 1.00 lﬁ.l 1.16 10.9832

SP5 2 1.0504 81 3.52 145 4,2 2.61 0.9650

L9



Table B-2: Statistical Quantities for Particles in the FFP and SP Experiments

Mean Velocity

3.38  2.98

0.58

anaahen

Number Mean Position rms Position ‘rms Velocity

Series of Runs r e r' - 0 V. Vo v, vé vé V;

:fFPl 39 3.66 3.16  0.79 0.72 -.02 .00 3.8 .83 .91 2.06
FFP2A Y 3.92  2.96 0.89 0.80 -.03 -.05 -2.99 70 .82 1.95
FFP2B 19 3.66 2.67  0.76  0.87 02 04 -1.3 64 .80 1,98
FFP3 9 391 349 1.06 0.96 -.05 .11 1.69 78 .95 2.03
FFPl 2l .35 2.84%  0.90 0.46 01 -.0b 045 73 .9h  2.48
FFP5 26 3.5 3.00 0.8 0.48 01 -.03 260 69 .81 1.92
FFPS 25 3.62 3.50  0.97 0.82 A1 -.09  23.2 2.50 2.28 5.19
SP2A,C,D 50 3.57 299  0.80 0.89 0L L1100 2,91 78 .97 1.95
SP3 20 3.21  3.88  0.66 0.71 -.02 -.09 3.73 .75 .85 1.56
spy 31 3.7 3.52 073 0, .02 .03 301 78 81 1.3
SP5 72 0.6k .03 .01 3.48 76 .84 1.60

89




Table B-3: Scales of the Particle Motion for FFP and SP Series

zmbHo.manmm Microscales
Series No. of Runs hmu.u. Q‘w.m Qw.m \NH:H. ﬂw.m ﬁw.m
FFP1 39 .30 38 W76 L6 49 .40
FFP2A Y. 43 .5 .70 A L6 .50
FFP2B 19 L9 40 .60 L2 b9 R
FFP3 9 .60 92 1.34 L3 .60 48
FFPL 24 A2 A43 1,00 43 .33 .57
FFP5 26 L6 .53 1.04 .55 .50 .51
FFPS 25 .Hw. .18 0.68 .12 .12 .58
SPzA,C,D 50 28 M0 .79 30 16 .13
SP3 20 .20 .32 .88 L A48 .30
SPL 31 .26 22 .83 .30 .23 .33
SP5 72 .19 21 .86 W31 .31 .38

69



Table B-4: Turbulent Dynamic Behavior foxr the FFP and SP Series

Series fT(cm/sec) Rep Cb,T % - ? | T"I(;( sec)
FFP1 - . 3.84 201 0;34 2.12 o 1.45 ‘0.78
FFP2A R -2.99 a7z 0.8 1.83 . 1. - 0.91
FEP2B -1.51 - 87 1.40 . 1.26 1.4 1.32
FFP3 1.69 o7 0.07 1.30 1.4 1.28
FFEL4 - 0.45 26 1.6 1.02 1. 1.63
FFPS 2.60 109 0.37 1.68 1.45 0.99
FFPS 23.20 1336 0.47 5.12 4.79 -0/32
SP2A,C,D 2.91 217 0.65 1.80 2.45 ' 0.92
SP3 - 3.73 171 0.53 2,59 0.93 .64
SBy 3.91° 135 0.66 2.67 0.53.. 0.62
SP5 3.48 80 1.17 2.3 0.2k . 0.69

* Jf,z = 1,66 seconds = Jf,z(’?) )

0L
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APPENDIX C: DATA PROCESSING PROCEDURES AND TECHNIQUES

C.1 Fluid Measurement’System anerata Processing_

Fluid turbulence measurements were obtained in a closed loop system
shown schematically in Fig. C.1-1. Water is pumped from the storage tank to
the header tank which provides pump‘isolation from the test section flow. A
Borda mouth entrance with vanes, screens and a rake provideé the necessary inlet
conditioning for nearly fully developed and stationary turbulence throughout
the i7 feet iOng test section. The exit elbow.is treated with a honeycomb resis-
tance to prevent flow asymmetry at the test section outlet. Steady flow and
température control were provided to insure retention of calibration of the
sensing anemometry and constant fluid properties.

The test section used for fluid measurements is an aluminum tube of 7.25 inches
inside diameter with several access ports along its length. The dual ports
shown as A; B, C, D and E in Fig. C.1-2 are spaced on 3 feet center-to-centers
with ports A2, A3, B2, B3, C2, and C3 spaced on one side only to provide 1 foot
centér—to-center’axial positioning.

Anemometer sensors were located in traversing mechanisms to provide radial
sepafation (Meek, 1972)‘or axial separation (Howard, 1974). For radial separation
ports 1, E, D, C, B; Arand 0 can be employed with 1, A and 0 providing traverses
acroés two orthogonal diameters to check for assymmetry. The ports on one foot
axial separations provided adequate positioning flexibility to examine the convected
field structure of the turbulence. Several probe support extensions éhown in
Fig. C.1-3 provided‘variation:in axial separation for these measurements.

Figure C.1-4 schematically shows the orientation of the probes in use with radial
offset to eliminate upstream probe wake effects.

The probe supports held standard quartz coated, six-mil diameter, hot-film

anemometer sensors. Two parallel data channels were used to sense the axial

—
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Veiocity at each of the two locations. Fig. C.1-5 shows the electronic data
procurement system employed to record the data. The recorded data was off-line
processed through appropriate filters, correlation analyzer, rms voltmeter and
digital voltmeter shown in Fig. C.1-6. Separate and/or superimposed plots of
autocorrelation and cross correlation data were obtained directly from the cor-
relation analyzer. Values of selected individual correlation points were
determined via a digital voltmeter. |

Howard (1974) has explicitly presented procedures for obtaining and processing
the two-point, space-time correlations in this system including examination
and correction of upstream probe wake effects and interpretation of the space-
time correlation data. The procedures are in common use in two-point space-time
data processing and are not repeated here. ‘Results from the fluid turbulence

measurements are presented in Appendix A.

C.2 Particle Measurement System and Data Processing

The experimental facility used was the same as that used in fluid measure-
ments (Fig. C.1-1) with the replacement of the 17 feet long aluminum test section
with smooth transparent lucite section of identical dimensions. Details of the
system for inserting and retrieving the radioactively labelled test particle have
been given previously by Jones (1966), Meek (1972), Howard (1974) and Jones, et
al. (1971, 1972). Descriptions of the position monitoring system and the particle
manufacture havé also been given in these reports. Only a brief presentation of
the data procuremenf system will be included so.that the discussion of processing
will be more complete.

A series of eight photomultiplier tubes with Nal crystals are placed on a
carriage which traverses the length of the test section at the mean speed of the

tagged particle as it passes downward through the test section. The geometric
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location of these sensors provides outputs from pairs;pf tubes related to the lateral
(X and Y) and to the axial (Z) location of the partieie with respect to a
calibrated region of the carriage. The carriage axiér leeation is also: monitored,
thus providing a continuous set of signals of particie location in the test
section. These sigheie’erenfiitered, differenced and recorded for a series of
runs with the same partlcle Analyses are uerferhed on eech'run and the resultant
statlstlcal structure values are ensembled to prov1de an 1mproved statistical
estimate of the partlcular particle behavior. Figure C.2-1 shows a schematic
of this data proce551ng

The actual partlcle position in the imaginary calibrated right circular
cylindrical'region within the test section (radius 6 cm and height 10 cm) is

determined from the three dlfferenced 51gnals (T,U,V) through third order

polynomial re1at10ns for each cartesian direction as

X[ =z-{a" T aéz.T"'fac.'aT +a£4-T +A U."' acétTU'I'
+d;.7T2U+q;U2+a‘.q TUZ+0. U3+ a., V+a T V+
+a TJI/+a U|/+a; TUV+a Ul/+a l/+

+a“8TV + Q, Ul/ ra, |/ | e

where T = Xl _.XZ/ O L (C.2-2)
U=Yi-Yz - ey

V = ZEH+ ZzwH -ZEL—-ZWQ - (€.2-9)
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and a.lj (i=1, 3 and j = 1, 20) are coefficients determinéd from least sduares
fitting calibration data. These calibration data were taken in a stationary test
system in which the labelled particle was physically placed on radial increments
of 1 cm from 0 to 6 cm, azimuthal increments of 22.5° from 0° to 337.5° and axial
increments of 1.27 cm from -5.08 cm to +5.08 cm. From these 1232 positions the
corresponding T, U and V voltage values were used to obtain the aij coefficients.
Due to the stability of the monitoring system, and the long half-life of the Co-
60 particle, calibrations were not requiredlfor each series of runs.

To process the raw analog records of the particle motion, analog-to-digital

conversion of the continuous signals was done at each milli-second in time. This

digital information enabled the instantaneous particle position to be evaluated from

which values of particle velocity were determined in all three coordinate directions.

From these values the detailed statistical structure of the particle velocity

was determined which included: ‘mean position, rms position, mean velocity, rms
velocity and particle turbulent Reynolds number and drag coefficient. In addition,
the particie autocovariance and power spectral density in all three directions
were evaluated and ensembled over the runs of the series.

The particle results were then corrected for bias due to noise which is
statistically uncorrelated to the true particle behavior. The noise was determined,
with the particle stationary in the calibration facility, from a series of data
records which were processed in the same manner as the particle data. Since the
true particle behavior and the noise are statistically independent, the noise
can be simply subtracted from the observed particle data results to improve the
accuracy of the particle turbulent behavior results. Such results are reported

in Appendix B.

S—




99

LIST OF REFERENCES

Ahmadi, G. and V. Goldschmidt, "Analytical Prediction of Turbulent Dispersion
of Finite Size Particles," Technical Report FMTR-70-3, Purdue University
(1970).

Basset, A. B., "A Treatise on Hydrodynamics,' Dover Publications, Inc., New York,
2, Ch. 22, p. 285 (1961).

Batchelor, G. K., A. M. Binnie and O. M. Phillips, "The Mean Velocity of
Discrete Particles in Turbulent Flow in a Pipe,'" Proceedings of the Royal
Physical Society-B, 68, pp. 1095-1104 (1955).

Binnie, A. M. and 0. M. Phillips, "The Mean Velocity of Slightly Buoyant and
Heavy Particles in Turbulent Flow in a Pipe,'" Journal of Fluid Mechanics,
4, pp. 87-96 (1958).

Boussinesque, J., '"Theorie Analytique de la Chaleur," 2, p. 224, Gauthier
Villars, Paris (1903).

Burchill, W. E., "Statistical Properties of Velocity and Temperature in Isothermal
and Nonisothermal Turbulent Pipe Flow,' PhD Thesis, University of Illinois
(1970).

Chao, B. T., "Turbulent Transport Behavior of Small Particles in Dilute
Suspension,' Osterreichisches Ingenieur-Archiv, 18, pp. 7-21 (1964).

Corrsin, S. and J. L. Lumley, 'On the Equation of Motion for a Particle in
Turbulent Fluid," Applied Scientific Research, Sec. A, 6, pp. 114-119
(1956). :

Friedlander, S. K., "Behavior of Suspended Particles in a Turbulent Fluid,"
American Institute of Chemical Engineering Journal, 3, pp. 381-385 (1957).

Hinze, J. 0., Turbulence, McGraw-Hill Co., Inc., New York, p. 357 (1959).

Howard, N. M., "Experimental Measurements of Particle Motion in a Turbulent
Pipe Flow," PhD Thesis, University of Illinois (1974).

Howard, N. M., B. G. Jones and C. C. Meek, "Experimental Measurement of Particle
Dispersion in Turbulent Flow," 3rd Biennial Symposium on Turbulence in
Liquids, Rolla, Missouri (1973).

Jones, B. G., "An Experimental Study of the Motion of Small Particles in a
Turbulent Fluid Field Using Digital Techniques For Statistical Data
Processing,'" PhD Thesis, University of Illinois (1966).

Jones, B. G., et al., "Transport Processes of Particles in Dilute Suspensions
in Turbulent Water Flow-Phase I," University of Illinois Water Resources
Center, Report No. 40 (1971).

Jones, B. G., et al., "Transport Processes of Particles in Dilute Suspensions in
Turbulent Water Flow-Phase II, University of Illinois Water Resources Center,
Report No. 58 (1972).

Jones, B. G., R. J. Ostensen and C. C. Meek, '"Linearized Non Stoksian Drag in



100

Kada, H. and T. J. Hanratty, "Effects of Solids on Turbulence in a Fluid,"
A.I.Ch.E. Journal, 6, No. 4, pp. 624-630 (1960).

Kennedy, D. A., "Some Measurements of the Dispersion of Spheres in a Turbulent
Flow,'" PhD Thesis, The Johns Hopkins University (1965).

Laufer, J., '"The Structure of Turbulence in Fully Developed Pipe Flow,"
- NACA Report 1174, (1954).

Lumley, J. L., "Some Problems Connected With the Motion of Small Particles
in Turbulent Fluid,'" PhD Thesis, The Johns Hopkins University (1957).

Meek, C. C., "Statistical Characterization of Dilute Particulate Suspensions
in Turbulent Fluid Fields," PhD Thesis, University of Illinois (1972).

Meek, C. C. and B. G. Jones, "Studies of the Behavior of Heavy Particles in a
Turbulent Fluid Flow," J. of Atmos. Sci., Vol. 30, No. 2, pp. 239-244
(1973).

Oseen, C. S., Hydrodynamik, p. 132, Leipzig (1927).

Peskin, R. L., "Stochastic Estimation Applications to Turbulent Diffusion,'
Stochastic Hydraulics, Proc. of the Int. Symp. on Stochastic Hydraullcs,
University of Pittsburgh Press, Pittsburgh, pp. 251-257 (1971).

Sabot, J., J. Renault and G. Compte-Bellot, 'Space-Time Correlations of the
Transverse Velocity Fluctuation in Pipe ‘Flow," Physics of Fluids, Vol. 16,
No. 9, pp. 1403-1405 (1973). :

Shirazi, M. A., "On the Motion of Small Particles in a Turbulent Field,"
PhD Thesis, University of Illinois (1967).

Snyder, W. H., '"Some Measurements of Particle Velocity Autocorrelation
Functions in a Turbulent Flow,' PhD Thesis, The Pennsylvania State
“University (1969).

Soo, S. L., "Statistical Properties of Momentum Transfer in Two Phase Flow,"
Chemical Engineering Science, 5, p. 57 (1956).

Soo, S. L., Fluid Dynamics of Multiphase Systems, Blaisdell Publishing Co.,
Waltham, Massachusetts, pp. 28-29 (1967). : ,

Taylor, G. I., '"Diffusion by Continuous MoVements," Proc. London Math
Society, 151, pp. 196-211 (1921).

Tchen, C. M., "Mean Value and Correlation Problems Connected With the Motion
of Small Particles Suspended in a Turbulent F1u1d " Martinus Nijhoff,
The Hague, Ch. 4, p. 72 (1947). ‘

Torobin, L. B. and W. H. Gauvin, "Fundamental Aspects of Solid-Gas Flow,"
Canadian Journal of Chemical Engineering, Part I, 37, pp. 129-141,
Part II, 37, pp. 167-176, Part III, 37, pp. 224- 236 (1959), Part IV
38, pp. 142-153, Part V, 38, pp 189-2 200 (1960), Part VI, 39,
ﬁ 113-120 (1961)

Wandel, C. F., and Kofoed-Hansen, 0., '"On the Eulerian-Lagrangian Transform in the
Statistical Theory of Turbulence," J. of Geophy. Res., 67, p. 3089 (1962).






