11 research outputs found

    Folliculin, the Product of the Birt-Hogg-Dube Tumor Suppressor Gene, Interacts with the Adherens Junction Protein p0071 to Regulate Cell-Cell Adhesion

    Get PDF
    Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhdflox/flox mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma

    Rapamycin induces miR-21 expression via an AKT-independent mechanism.

    No full text
    <p><b>A</b>) Western blot analysis of 621-101 cells treated with DMSO (lane 1), Rapamycin (20 nM, 24 h - lane 2), the AKT inhibitor MK2206 (10 nM, 24 h - lane 3), and Rapamycin and MK2206 (lane 4). Rapamycin treatment induces AKT phosphorylation at S473 and MK2206 abrogates Rapamycin's effect on phosphor-Akt. <b>B</b>) Expression of miR-21, 24, 29b, and 221 in 621-101 cells treated as in A). miR-21 levels are induced by Rapamycin, however the addition of MK2206 has no effect suggesting an AKT-independent mechanism.</p

    Exiqon miRNA microarray confirms 8 Rapamycin-dependent miRNA.

    No full text
    <p>621-101 cells were treated with Rapamycin 20 nM or DMSO for 24 hours. Total RNA was isolated and applied to the Exiqon platform, which assays 946 human miRNA. <b>A</b>) Heat map of miRNA dysregulated by Rapamycin >1.5-fold, log<sub>2</sub> scale. RNA from three biologic replicates per condition was pooled; each miRNA was assayed in quadruplet on the array. <b>B</b>) miRNA dysregulated by Rapamycin >1.5-fold (normalized to RNU44). Highlighted miRNA (except miR-31 and 210) are common to both the Exiqon and Signosis platforms. miR-21 is circled.</p

    qRT-PCR confirmation of Rapamycin-dependent miRNA in TSC2-deficient cells.

    No full text
    <p>TSC2−/− cells were treated with Rapamycin 20 nM or DMSO for 24 hr and miRNA expression was assessed by qRT-PCR. <b>A</b>) miRNA expression is similar in 621-101 cells using RNU44 (left panel) or RNU48 (right panel) for normalization. <b>B</b>) miRNA expression in 621-101 cells normalized to RNU44. Highlighted results are significant using a Bonferroni correction.</p

    miR-21 is mTOR-dependent and may be TSC2-independent.

    No full text
    <p><b>A</b>) Stable downregulation of tuberin in C3H-10T1/2 pre-pericytes results in increased phosphorylation of ribosomal protein S6, as expected. Treatment with Rapamycin (20 nM, 24 h) inhibits phosphorylation of S6. <b>B</b>) Downregulation of TSC2 in C3H-10T1/2 cells does not affect miR-21 expression. Inhibition of mTORC1 with Rapamycin induces ∼2-fold increase in miR-21 expression in both control shRNA and TSC2 shRNA cells. Bars represent the mean of two biologic replicates +/− SD. * p<0.05. <b>C</b>) LAM patient-derived cells (621-101), TSC2-null rat uterine leiomyoma-derived cells (ELT3), TSC2-null mouse embryonic fibroblasts (MEFs), HEK293 and lung adenocarcinoma (A549) cells were treated with Rapamycin 20 nM vs Control for 24 h. Relative MiR-21 expression was determined by qRT-PCR. Human cells were normalized to RNU44, mouse cells to snora202 and rat cells to U87, which are all small nucleolar RNA molecules. For all charts, bars represent the mean of three biologic replicates +/− standard error. * p<0.05. ** p<0.01.</p
    corecore