40 research outputs found

    Management of mother-newborn dyads in the COVID-19 era.

    Get PDF

    Training and evaluating simulation debriefers in low-resource settings: lessons learned from Bihar, India.

    Get PDF
    BACKGROUND: To develop effective and sustainable simulation training programs in low-resource settings, it is critical that facilitators are thoroughly trained in debriefing, a critical component of simulation learning. However, large knowledge gaps exist regarding the best way to train and evaluate debrief facilitators in low-resource settings. METHODS: Using a mixed methods approach, this study explored the feasibility of evaluating the debriefing skills of nurse mentors in Bihar, India. Videos of obstetric and neonatal post-simulation debriefs were assessed using two known tools: the Center for Advanced Pediatric and Perinatal Education (CAPE) tool and Debriefing Assessment for Simulation in Healthcare (DASH). Video data was used to evaluate interrater reliability and changes in debriefing performance over time. Additionally, twenty semi-structured interviews with nurse mentors explored perceived barriers and enablers of debriefing in Bihar. RESULTS: A total of 73 debriefing videos, averaging 18 min each, were analyzed by two raters. The CAPE tool demonstrated higher interrater reliability than the DASH; 13 of 16 CAPE indicators and two of six DASH indicators were judged reliable (ICC > 0.6 or kappa > 0.40). All indicators remained stable or improved over time. The number of 'instructors questions,' the amount of 'trainee responses,' and the ability to 'organize the debrief' improved significantly over time (p < 0.01, p < 0.01, p = 0.04). Barriers included fear of making mistakes, time constraints, and technical challenges. Enablers included creating a safe learning environment, using contextually appropriate debriefing strategies, and team building. Overall, nurse mentors believed that debriefing was a vital aspect of simulation-based training. CONCLUSION: Simulation debriefing and evaluation was feasible among nurse mentors in Bihar. Results demonstrated that the CAPE demonstrated higher interrater reliability than the DASH and that nurse mentors were able to maintain or improve their debriefing skills overtime. Further, debriefing was considered to be critical to the success of the simulation training. However, fear of making mistakes and logistical challenges must be addressed to maximize learning. Teamwork, adaptability, and building a safe learning environment enhanced the quality enhanced the quality of simulation-based training, which could ultimately help to improve maternal and neonatal health outcomes in Bihar

    Cohort study of neonatal resuscitation skill retention in frontline healthcare facilities in Bihar, India, after PRONTO simulation training.

    Get PDF
    BACKGROUND: Use of simulation in neonatal resuscitation (NR) training programmes has increased throughout low-income and middle-income countries. Many of such programmes have demonstrated a positive impact on NR knowledge and skill acquisition along with reduction of early neonatal mortality and fresh stillbirth rates. However, NR skill retention after simulation programmes remains a challenge. METHODS: This study assessed facility level NR skill retention after PRONTO International's simulation training in Bihar, India. Training was conducted within CARE India's statewide in-job, on-site Apatkaleen Matritva evam Navjat Tatparta mentoring programme as part of a larger quality improvement and health systems strengthening initiative. Public sector facilities were initially offered training, facilitated by trained nursing graduates, during 8-month phases between September 2015 and January 2017. Repeat training began in February 2018 and was facilitated by peers. NR skills in simulated resuscitations were assessed at the facility level at the midpoint and endpoint of initial training and prior to and at the midpoint of repeat training. RESULTS: Facilities administering effective positive pressure ventilation and assessing infant heart rate increased (31.1% and 13.1%, respectively, both p=0.03) from midinitial to postinitial training (n=64 primary health centres (PHCs) and 192 simulations). This was followed by a 26.2% and 20.9% decline in these skills respectively over the training gap (p≤0.01). A significant increase (16.1%, p=0.04) in heart rate assessment was observed by the midpoint of repeat training with peer facilitators (n=45 PHCs and 90 simulations). No significant change was observed in other skills assessed. CONCLUSIONS: Despite initial improvement in select NR skills, deterioration was observed at a facility-level post-training. Given the technical nature of NR skills and the departure these skills represent from traditional practices in Bihar, refresher trainings at shorter intervals are likely necessary. Very limited evidence suggests peer simulation facilitators may enable such increased training frequency, but further study is required

    Does teamwork and communication improve with simulation training? An evaluation of simulation training videos in Bihar, India

    Get PDF
    BACKGROUND High rates of medical error – attributed to ineffective communication among health care providers – poses a threat to patient safety. We embedded Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS™) concepts within a simulation-based curriculum and trained clinical teams providing intrapartum care in low-income settings. We evaluated whether simulation can be used to improve teamwork and communication among clinical teams. METHODS Nurse mentors facilitated and video-recorded simulated clinical scenarios to give health care providers (mentees) the opportunity to practice both technical and non-technical skills. Independent evaluators reviewed video-recorded simulation scenarios at midpoint and endpoint to evaluate changes in use of evidence-based practices. Semi-structured interviews were also conducted with nurse mentors to explore their experiences teaching non-technical skills to clinical teams. RESULTS Five hundred and sixty-six simulated clinical scenarios were included in the final analysis. Adoption of techniques to improve communication and teamwork, such as the ‘SBAR’ technique and ‘think out loud’, increased from midpoint to endpoint in all simulated scenarios. CONCLUSION Incorporation of TeamSTEPPS™ concepts into a simulation training program for health care providers improved teamwork and communication in simulated scenarios and can potentially be extended to actual emergency cases

    Assessing a digital technology-supported community child health programme in India using the Social Return on Investment framework.

    Get PDF
    An estimated 5.0 million children aged under 5 years died in 2020, with 82% of these deaths occurring in sub-Saharan Africa and southern Asia. Over one-third of Mumbai's population has limited access to healthcare, and child health outcomes are particularly grave among the urban poor. We describe the implementation of a digital technology-based child health programme in Mumbai and evaluate its holistic impact. Using an artificial intelligence (AI)-powered mobile health platform, we developed a programme for community-based management of child health. Leveraging an existing workforce, community health workers (CHW), the programme was designed to strengthen triage and referral, improve access to healthcare in the community, and reduce dependence on hospitals. A Social Return on Investment (SROI) framework is used to evaluate holistic impact. The programme increased the proportion of illness episodes treated in the community from 4% to 76%, subsequently reducing hospitalisations and out-of-pocket expenditure on private healthcare providers. For the total investment of Indian Rupee (INR) 2,632,271, the social return was INR 34,435,827, delivering an SROI ratio of 13. The annual cost of the programme per child was INR 625. Upskilling an existing workforce such as CHWs, with the help of AI-driven decision- support tools, has the potential to extend capacity for critical health services into community settings. This study provides a blueprint for evaluating the holistic impact of health technologies using evidence-based tools like SROI. These findings have applicability across income settings, offering clear rationale for the promotion of technology-supported interventions that strengthen healthcare delivery

    Operationalising kangaroo Mother care before stabilisation amongst low birth Weight Neonates in Africa (OMWaNA): protocol for a randomised controlled trial to examine mortality impact in Uganda.

    Get PDF
    BACKGROUND: There are 2.5 million neonatal deaths each year; the majority occur within 48 h of birth, before stabilisation. Evidence from 11 trials shows that kangaroo mother care (KMC) significantly reduces mortality in stabilised neonates; however, data on its effect among neonates before stabilisation are lacking. The OMWaNA trial aims to determine the effect of initiating KMC before stabilisation on mortality within seven days relative to standard care. Secondary objectives include exploring pathways for the intervention's effects and assessing incremental costs and cost-effectiveness between arms. METHODS: We will conduct a four-centre, open-label, individually randomised, superiority trial in Uganda with two parallel groups: an intervention arm allocated to receive KMC and a control arm receiving standard care. We will enrol 2188 neonates (1094 per arm) for whom the indication for KMC is 'uncertain', defined as receiving ≥ 1 therapy (e.g. oxygen). Admitted singleton, twin and triplet neonates (triplet if demise before admission of ≥ 1 baby) weighing ≥ 700-≤ 2000 g and aged ≥ 1-< 48 h are eligible. Treatment allocation is random in a 1:1 ratio between groups, stratified by weight and recruitment site. The primary outcome is mortality within seven days. Secondary outcomes include mortality within 28 days, hypothermia prevalence at 24 h, time from randomisation to stabilisation or death, admission duration, time from randomisation to exclusive breastmilk feeding, readmission frequency, daily weight gain, infant-caregiver attachment and women's wellbeing at 28 days. Primary analyses will be by intention-to-treat. Quantitative and qualitative data will be integrated in a process evaluation. Cost data will be collected and used in economic modelling. DISCUSSION: The OMWaNA trial aims to assess the effectiveness of KMC in reducing mortality among neonates before stabilisation, a vulnerable population for whom its benefits are uncertain. The trial will improve understanding of pathways underlying the intervention's effects and will be among the first to rigorously compare the incremental cost and cost-effectiveness of KMC relative to standard care. The findings are expected to have broad applicability to hospitals in sub-Saharan Africa and southern Asia, where three-quarters of global newborn deaths occur, as well as important policy and programme implications. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02811432. Registered on 23 June 2016

    Time-Resolved Spectroscopy of the 3 Brightest and Hardest Short Gamma-Ray Bursts Observed with the FGST Gamma-Ray Burst Monitor

    Full text link
    From July 2008 to October 2009, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (FGST) has detected 320 Gamma-Ray Bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power-law with index ~-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts, and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices ({\alpha}) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched towards higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follows their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises, and we confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.Comment: 14 pages, 10 figures, 9 tables, Accepted for publication in the Astrophysical Journal September, 23 2010 (Submitted May, 16 2010) Corrections: 1 reference updated, figure 10 captio

    Sialyl Residues Modulate LPS-Mediated Signaling through the Toll-Like Receptor 4 Complex

    Get PDF
    We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation
    corecore