22 research outputs found

    Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images.

    Get PDF
    BACKGROUND: There is an increasing interest in non-contrast-enhanced magnetic resonance imaging (MRI) for detecting and evaluating breast lesions. We present a methodology utilizing lesion core and periphery region of interest (ROI) features derived from directional diffusion-weighted imaging (DWI) data to evaluate performance in discriminating benign from malignant lesions in dense breasts. METHODS: We accrued 55 dense-breast cases with 69 lesions (31 benign; 38 cancer) at a single institution in a prospective study; cases with ROIs exceeding 7.50 cm RESULTS: The region-growing algorithm for 3D lesion model generation improved inter-observer variability over hand drawn ROIs (DSC: 0.66 vs 0.56 (p \u3c 0.001) with substantial agreement (DSC \u3e 0.8) in 46% vs 13% of cases, respectively (p \u3c 0.001)). The overall classifier improved discrimination over mean ADC, (ROC- area under the curve (AUC): 0.85 vs 0.75 and 0.83 vs 0.74 respectively for the two readers). CONCLUSIONS: A classifier generated from directional DWI information using lesion core and lesion periphery information separately can improve lesion discrimination in dense breasts over mean ADC and should be considered for inclusion in computer-aided diagnosis algorithms. Our model-based ROIs could facilitate standardization of breast MRI computer-aided diagnostics (CADx)

    Prostate Volumes Derived From MRI and Volume-Adjusted Serum Prostate-Specific Antigen: Correlation With Gleason Score of Prostate Cancer

    Get PDF
    The purpose of this article is to study relationships between MRI-based prostate volume and volume-adjusted serum prostate-specific antigen (PSA) concentration estimates and prostate cancer Gleason score

    Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI

    No full text
    Accurately measuring arterial input function (AIF) is essential for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). We used the indicator dilution principle to evaluate the accuracy of AIF measured directly from an artery following a low-dose contrast media ultrafast DCE-MRI. In total, 15 patients with biopsy-confirmed localized prostate cancers were recruited. Cardiac MRI (CMRI) and ultrafast DCE-MRI were acquired on a Philips 3 T Ingenia scanner. The AIF was measured at iliac arties following injection of a low-dose (0.015 mmol/kg) gadolinium (Gd) contrast media. The cardiac output (CO) from CMRI (COCMRI) was calculated from the difference in ventricular volume at diastole and systole measured on the short axis of heart. The CO from DCE-MRI (CODCE) was also calculated from the AIF and dose of the contrast media used. A correlation test and Bland–Altman plot were used to compare COCMRI and CODCE. The average (±standard deviation [SD]) area under the curve measured directly from local AIF was 0.219 ± 0.07 mM·min. The average (±SD) COCMRI and CODCE were 6.52 ± 1.47 L/min and 6.88 ± 1.64 L/min, respectively. There was a strong positive correlation (r = 0.82, P < .01) and good agreement between COCMRI and CODCE. The CODCE is consistent with the reference standard COCMRI. This indicates that the AIF can be measured accurately from an artery with ultrafast DCE-MRI following injection of a low-dose contrast media
    corecore