22 research outputs found

    Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images.

    Get PDF
    BACKGROUND: There is an increasing interest in non-contrast-enhanced magnetic resonance imaging (MRI) for detecting and evaluating breast lesions. We present a methodology utilizing lesion core and periphery region of interest (ROI) features derived from directional diffusion-weighted imaging (DWI) data to evaluate performance in discriminating benign from malignant lesions in dense breasts. METHODS: We accrued 55 dense-breast cases with 69 lesions (31 benign; 38 cancer) at a single institution in a prospective study; cases with ROIs exceeding 7.50 cm RESULTS: The region-growing algorithm for 3D lesion model generation improved inter-observer variability over hand drawn ROIs (DSC: 0.66 vs 0.56 (p \u3c 0.001) with substantial agreement (DSC \u3e 0.8) in 46% vs 13% of cases, respectively (p \u3c 0.001)). The overall classifier improved discrimination over mean ADC, (ROC- area under the curve (AUC): 0.85 vs 0.75 and 0.83 vs 0.74 respectively for the two readers). CONCLUSIONS: A classifier generated from directional DWI information using lesion core and lesion periphery information separately can improve lesion discrimination in dense breasts over mean ADC and should be considered for inclusion in computer-aided diagnosis algorithms. Our model-based ROIs could facilitate standardization of breast MRI computer-aided diagnostics (CADx)

    Prostate Volumes Derived From MRI and Volume-Adjusted Serum Prostate-Specific Antigen: Correlation With Gleason Score of Prostate Cancer

    Get PDF
    The purpose of this article is to study relationships between MRI-based prostate volume and volume-adjusted serum prostate-specific antigen (PSA) concentration estimates and prostate cancer Gleason score

    Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: A pilot study

    No full text
    Purpose: High spectral and spatial resolution magnetic resonance imaging (HiSS MRI) yields information on the local environment of suspicious lesions. Previous work has demonstrated the advantages of HiSS (complete fat-suppression, improved image contrast, no required contrast agent, etc.), leading to initial investigations of water resonance lineshape for the purpose of breast lesion classification. The purpose of this study is to investigate a quantitative imaging biomarker, which characterizes non-Lorentzian components of the water resonance in HiSS MRI datasets, for computer-aided diagnosis (CADx). Methods: The inhomogeneous broadening and non-Lorentzian or “off-peak” components seen in the water resonance of proton spectra of breast HiSS images are analyzed by subtracting a Lorentzian fit from the water peak spectra and evaluating the difference spectrum or “residual.” The maxima of these residuals (referred to hereafter as “off-peak components”) tend to be larger in magnitude in malignant lesions, indicating increased broadening in malignant lesions. The authors considered only those voxels with the highest magnitude off-peak components in each lesion, with the number of selected voxels dependent on lesion size. Our voxel-based method compared the magnitudes and frequencies of off-peak components of all voxels from all lesions in a database that included 15 malignant and 8 benign lesions (yielding ∌3900 voxels) based on the lesions’ biopsy-confirmed diagnosis. Lesion classification was accomplished by comparing the average off-peak component magnitudes and frequencies in malignant and benign lesions. The area under the ROC curve (AUC) was used as a figure of merit for both the voxel-based and lesion-based methods. Results: In the voxel-based task of distinguishing voxels from malignant and benign lesions, off-peak magnitude yielded an AUC of 0.88 (95% confidence interval [0.84, 0.91]). In the lesion-based task of distinguishing malignant and benign lesions, average off-peak magnitude yielded an AUC 0.83 (95% confidence interval [0.61, 0.98]). Conclusions: These promising AUC values suggest that analysis of the water-resonance in each HiSS image voxel using “residual analysis” could have high diagnostic utility and could be used to enhance current CADx methods and allow detection of breast cancer without the need to inject contrast agents

    Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI

    No full text
    Accurately measuring arterial input function (AIF) is essential for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). We used the indicator dilution principle to evaluate the accuracy of AIF measured directly from an artery following a low-dose contrast media ultrafast DCE-MRI. In total, 15 patients with biopsy-confirmed localized prostate cancers were recruited. Cardiac MRI (CMRI) and ultrafast DCE-MRI were acquired on a Philips 3 T Ingenia scanner. The AIF was measured at iliac arties following injection of a low-dose (0.015 mmol/kg) gadolinium (Gd) contrast media. The cardiac output (CO) from CMRI (COCMRI) was calculated from the difference in ventricular volume at diastole and systole measured on the short axis of heart. The CO from DCE-MRI (CODCE) was also calculated from the AIF and dose of the contrast media used. A correlation test and Bland–Altman plot were used to compare COCMRI and CODCE. The average (±standard deviation [SD]) area under the curve measured directly from local AIF was 0.219 ± 0.07 mM·min. The average (±SD) COCMRI and CODCE were 6.52 ± 1.47 L/min and 6.88 ± 1.64 L/min, respectively. There was a strong positive correlation (r = 0.82, P < .01) and good agreement between COCMRI and CODCE. The CODCE is consistent with the reference standard COCMRI. This indicates that the AIF can be measured accurately from an artery with ultrafast DCE-MRI following injection of a low-dose contrast media
    corecore