61 research outputs found
Recommended from our members
Generating Secure Service Compositions
Ensuring that the compositions of services that constitute service-based systems satisfy given security properties is a key prerequisite for the adoption of the service oriented computing paradigm. In this paper, we address this issue using a novel approach that guarantees service composition security by virtue of the generation of compositions. Our approach generates service compositions that are guaranteed to satisfy security properties based on secure service orchestration (SESO) patterns. These patterns express primitive (e.g., sequential, parallel) service orchestrations, which are proven to have certain global security properties if the individual services participating in them have themselves other security properties. The paper shows how SESO patterns can be constructed and gives examples of proofs for such patterns. It also presents the process of using SESO patterns to generate secure service compositions and presents the results of an initial experimental evaluation of the approach
A framework for deriving semantic web services
Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been
predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but
lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the
migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the
framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario
Conditional Gene Expression in Mycobacterium abscessus
Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen
Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.
Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4 <sup>+</sup> T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity
Live imaging of SARS-CoV-2 infection in mice reveals neutralizing antibodies require Fc function for optimal efficacy
Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We visualized sequential spread of virus from the nasal cavity to the lungs followed by systemic spread to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days of infection. In addition to direct neutralization, in vivo efficacy required Fc effector functions of NAbs, with contributions from monocytes, neutrophils and natural killer cells, to dampen inflammatory responses and limit immunopathology. Thus, our study highlights the requirement of both Fab and Fc effector functions for an optimal in vivo efficacy afforded by NAbs against SARS-CoV-2
Molecular Longitudinal Tracking of Mycobacterium abscessus spp. during Chronic Infection of the Human Lung
<div><p>The <i>Mycobacterium abscessus</i> complex is an emerging cause of chronic pulmonary infection in patients with underlying lung disease. The <i>M. abscessus</i> complex is regarded as an environmental pathogen but its molecular adaptation to the human lung during long-term infection is poorly understood. Here we carried out a longitudinal molecular epidemiological analysis of 178 <i>M. abscessus</i> spp. isolates obtained from 10 cystic fibrosis (CF) and 2 non CF patients over a 13 year period. Multi-locus sequence and molecular typing analysis revealed that 11 of 12 patients were persistently colonized with the same genotype during the course of the infection while replacement of a <i>M. abscessus sensu stricto</i> strain with a <i>Mycobacterium massiliense</i> strain was observed for a single patient. Of note, several patients including a pair of siblings were colonized with closely-related strains consistent with intra-familial transmission or a common infection reservoir. In general, a switch from smooth to rough colony morphology was observed during the course of long-term infection, which in some cases correlated with an increasing severity of clinical symptoms. To examine evolution during long-term infection of the CF lung we compared the genome sequences of 6 sequential isolates of <i>Mycobacterium bolletii</i> obtained from a single patient over an 11 year period, revealing a heterogeneous clonal infecting population with mutations in regulators controlling the expression of virulence factors and complex lipids. Taken together, these data provide new insights into the epidemiology of <i>M. abscessus</i> spp. during long-term infection of the CF lung, and the molecular transition from saprophytic organism to human pathogen.</p></div
Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking
Mycobacterium abscessus is considered the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. Infections with M. abscessus are increasingly found in patients with chronic lung diseases, especially cystic fibrosis, and are often refractory to antibiotic therapy. M. abscessus has two morphotypes with distinct effects on host cells and biological responses. The smooth (S) variant is recognized as the initial airway colonizer while the rough (R) is known to be a potent inflammatory inducer associated with invasive disease, but the underlying immunopathological mechanisms of the infection remain unsolved. We conducted a comparative stepwise dissection of the inflammatory response in S and R pathogenesis by monitoring infected transparent zebrafish embryos. Loss of TNFR1 function resulted in increased mortality with both variants, and was associated with unrestricted intramacrophage bacterial growth and decreased bactericidal activity. The use of transgenic zebrafish lines harboring fluorescent macrophages and neutrophils revealed that neutrophils, like macrophages, interact with M. abscessus at the initial infection sites. Impaired TNF signaling disrupted the IL8-dependent neutrophil mobilization, and the defect in neutrophil trafficking led to the formation of aberrant granulomas, extensive mycobacterial cording, unrestricted bacterial growth and subsequent larval death. Our findings emphasize the central role of neutrophils for the establishment and maintenance of the protective M. abscessus granulomas. These results also suggest that the TNF/IL8 inflammatory axis is necessary for protective immunity against M. abscessus and may be of clinical relevance to explain why immunosuppressive TNF therapy leads to the exacerbation of M. abscessus infections
Détermination du profil de modulation des réseaux holographiques de phase
The complete knowledge of the geometrical and physic-chemical parameters
of a periodically modulated volume material, permits the determination
of the diffraction picture. Such a purely mathematical and numerical
determination is of great scientific and technological interest.
The modulation profile (given by its Fourier coefficients) is one of
these parameters. It can be determinated a posteriori only by the
measurement of the different diffracted intensities at different orders.
Starting from this idea, we can achieve a new method (theoritically exact)
which permits the study of the diffraction of an electromagnetic plane wave
by a dielectric grating. This method leads to the numerical treatment
of ordinary differential equation with variable – by periodic – coefficients.
The method is presented here for the classical case of a wave with electric
polarization parallel to the grating. For the analysis of the modulation profile,
we have considered realistic models of profiles, contrary to the current models,
which have only a numerical existence. In order to achieve our experimental work,
we have developed two experimental set-up: the first for the recording and the
second for the analysis of diffractive elements. The whole set-up can be directed
with the aid of a software from a personal computer. The validity of results
are discussed.La connaissance parfaite des paramètres géométriques et physico-chimiques
d'un matériau de volume modulé périodiquement, donne une bonne connaissance
de la figure de diffraction. Celle-ci a une grande importance scientifique
et technologique. Le profil de modulation (donné par ses coefficients de Fourier)
est l'un de ces paramètres qui ne peut être déterminé a posteriori qu'à partir
de la répartition d'intensité entre les différents ordres. A partir de cette idée,
nous avons établi une méthode exacte permettant l'étude de la diffraction d'une
onde plane électromagnétique par un réseau diélectrique, qui conduit au traitement
numérique d'une équation différentielle à coefficients variables. La méthode est
donnée pour le cas classique où le champ électrique est parallèle au plan du réseau.
Pour analyser l'influence du profil de modulation, on considère des modèles
mathématiques réalistes et non (comme il est courant dans la littérature)
des modèles physiques irréalisables. Pour notre travail expérimental nous avons
mis au point deux montages : le premier pour l'enregistrement et le second
pour l'analyse. Ce dernier est totalement automatisé et piloté par un ordinateur.
Les résultats obtenus sont largement discutés
- …