7,826 research outputs found
Directed paths on hierarchical lattices with random sign weights
We study sums of directed paths on a hierarchical lattice where each bond has
either a positive or negative sign with a probability . Such path sums
have been used to model interference effects by hopping electrons in the
strongly localized regime. The advantage of hierarchical lattices is that they
include path crossings, ignored by mean field approaches, while still
permitting analytical treatment. Here, we perform a scaling analysis of the
controversial ``sign transition'' using Monte Carlo sampling, and conclude that
the transition exists and is second order. Furthermore, we make use of exact
moment recursion relations to find that the moments always determine,
uniquely, the probability distribution $P(J)$. We also derive, exactly, the
moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations
($n\to 0$) to obtain for odd and even moments yield a new signal for
the transition that coincides with Monte Carlo simulations. Analysis of high
moments yield interesting ``solitonic'' structures that propagate as a function
of . Finally, we derive the exact probability distribution for path sums
up to length L=64 for all sign probabilities.Comment: 20 pages, 12 figure
Unveiling shocks in planetary nebulae
The propagation of a shock wave into a medium is expected to heat the
material beyond the shock, producing noticeable effects in intensity line
ratios such as [O III]/Halpha. To investigate the occurrence of shocks in
planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images
of PNe available in the HST archive to build their [O III]/Halpha ratio maps
and to search for regions where this ratio is enhanced. Regions with enhanced
[O III]/Halpha emission ratio can be ascribed to two different types of
morphological structures: bow-shock structures produced by fast collimated
outflows and thin skins enveloping expanding nebular shells. Both collimated
outflows and expanding shells are therefore confirmed to generate shocks in
PNe. We also find regions with depressed values of the [O III]/Halpha ratio
which are found mostly around density bounded PNe, where the local contribution
of [N II] emission into the F656N Halpha filter cannot be neglected.Comment: 13 pages, 9 figures, 3 tables; To appear in Astronomy & Astrophysic
Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping
We investigate the magneto-conductance (MC) anisotropy in the variable range
hopping regime, caused by quantum interference effects in three dimensions.
When no spin-orbit scattering is included, there is an increase in the
localization length (as in two dimensions), producing a large positive MC. By
contrast, with spin-orbit scattering present, there is no change in the
localization length, and only a small increase in the overall tunneling
amplitude. The numerical data for small magnetic fields , and hopping
lengths , can be collapsed by using scaling variables , and
in the perpendicular and parallel field orientations
respectively. This is in agreement with the flux through a `cigar'--shaped
region with a diffusive transverse dimension proportional to . If a
single hop dominates the conductivity of the sample, this leads to a
characteristic orientational `finger print' for the MC anisotropy. However, we
estimate that many hops contribute to conductivity of typical samples, and thus
averaging over critical hop orientations renders the bulk sample isotropic, as
seen experimentally. Anisotropy appears for thin films, when the length of the
hop is comparable to the thickness. The hops are then restricted to align with
the sample plane, leading to different MC behaviors parallel and perpendicular
to it, even after averaging over many hops. We predict the variations of such
anisotropy with both the hop size and the magnetic field strength. An
orientational bias produced by strong electric fields will also lead to MC
anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR
Ballistic resistivity in aluminum nanocontacts
One of the major industrial challenges is to profit from some fascinating
physical features present at the nanoscale. The production of dissipationless
nanoswitches (or nanocontacts) is one of such attractive applications.
Nevertheless, the lack of knowledge of the real efficiency of electronic
ballistic/non dissipative transport limits future innovations. For multi-valent
metallic nanosystems -where several transport channels per atom are involved-
the only experimental technique available for statistical transport
characterization is the conductance histogram. Unfortunately its interpretation
is difficult because transport and mechanical properties are intrinsically
interlaced. We perform a representative series of semiclassical molecular
dynamics simulations of aluminum nanocontact breakages, coupled to full quantum
conductance calculations, and put in evidence a linear relationship between the
conductance and the contact minimum cross-section for the geometrically favored
aluminum nanocontact configurations. Valid in a broad range of conductance
values, such relation allows the definition of a transport parameter for
nanomaterials, that represents the novel concept of ballistic resistivity
Langevin equation with scale-dependent noise
A new wavelet based technique for the perturbative solution of the Langevin
equation is proposed. It is shown that for the random force acting in a limited
band of scales the proposed method directly leads to a finite result with no
renormalization required. The one-loop contribution to the Kardar-Parisi-Zhang
equation Green function for the interface growth is calculated as an example.Comment: LaTeX, 5 page
A Unified Algebraic Approach to Classical Yang-Baxter Equation
In this paper, the different operator forms of classical Yang-Baxter equation
are given in the tensor expression through a unified algebraic method. It is
closely related to left-symmetric algebras which play an important role in many
fields in mathematics and mathematical physics. By studying the relations
between left-symmetric algebras and classical Yang-Baxter equation, we can
construct left-symmetric algebras from certain classical r-matrices and
conversely, there is a natural classical r-matrix constructed from a
left-symmetric algebra which corresponds to a parak\"ahler structure in
geometry. Moreover, the former in a special case gives an algebraic
interpretation of the ``left-symmetry'' as a Lie bracket ``left-twisted'' by a
classical r-matrix.Comment: To appear in Journal of Physics A: Mathematical and Theoretica
Spin Transport in Two Dimensional Hopping Systems
A two dimensional hopping system with Rashba spin-orbit interaction is
considered. Our main interest is concerned with the evolution of the spin
degree of freedom of the electrons. We derive the rate equations governing the
evolution of the charge density and spin polarization of this system in the
Markovian limit in one-particle approximation. If only two-site hopping events
are taken into account, the evolution of the charge density and of the spin
polarization is found to be decoupled. A critical electric field is found,
above which oscillations are superimposed on the temporal decay of the total
polarization. A coupling between charge density and spin polarization occurs on
the level of three-site hopping events. The coupling terms are identified as
the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an
unpolarized charge current through a sheet of finite width leads to a
transversal spin accumulation in our model system.Comment: 15 pages, 3 figure
Linking Telecom Service High-level Abstract Models to Simulators based on Model Transformations: The IMS Case Study
Part 3: ManagementInternational audienceTelecommunication services are widespread and subject today to tensions on a competitive market. Telecommunication service design is more and more software oriented. To reduce time to market and cost of services, a service designer better need to simulate and evaluate his design earlier. The approach proposed in this paper is to reduce the abstraction gap between modeling and simulation phases using model transformation. But manual transformations are so far time consuming and error prone.As a trustworthy solution, model based techniques and associated transformations permit to systematically link service models with simulation phase before realization. We thus propose as a first contribution a meta-model dedicated to concepts of IP Multimedia Subsystem core network as a case study. Our meta-model constrains and defines such network entities to be used in the code generation, which is our second contribution. The implementation of a video conference service permits to illustrate our workbench
- …