162 research outputs found

    Spotted Group Rickettsioses in Asia

    Get PDF

    Emergence of Anaplasma Species Related to A. phagocytophilum and A. platys in Senegal

    Get PDF
    The genus Anaplasma (Anaplasmataceae, Rickettsiales) includes tick-transmitted bacterial species of importance to both veterinary and human medicine. Apart from the traditionally recognized six Anaplasma species (A. phagocytophilum, A. platys, A. bovis, A. ovis, A. centrale, A. marginale), novel strains and candidate species, also of relevance to veterinary and human medicine, are emerging worldwide. Although species related to the zoonotic A. platys and A. phagocytophilum have been reported in several African and European Mediterranean countries, data on the presence of these species in sub-Saharan countries are still lacking. This manuscript reports the investigation of Anaplasma strains related to zoonotic species in ruminants in Senegal by combining different molecular tests and phylogenetic approaches. The results demonstrated a recent introduction of Candidatus (Ca) Anaplasma turritanum, a species related to the pathogenic A. platys, possibly originating by founder effect. Further, novel undetected strains related to Candidatus (Ca) Anaplasma cinensis were detected in cattle. Based on groEL and gltA molecular comparisons, we propose including these latter strains into the Candidatus (Ca) Anaplasma africanum species. Finally, we also report the emergence of Candidatus (Ca) A. boleense in Senegal. Collectively, results confirm that Anaplasma species diversity is greater than expected and should be further investigated, and that Anaplasma routine diagnostic procedures and epidemiological surveillance should take into account specificity issues raised by the presence of these novel strains, suggesting the use of a One Health approach for the management of Anaplasmataceae in sub-Saharan Africa

    A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov

    Get PDF
    Background: Obligate intracellular bacteria of arthropods often exhibit a significant role in either human health or arthropod ecology. Methodology/Principal Findings: An obligate intracellular gamma-proteobacterium was isolated from the actively questing hard tick Ixodes ricinus using mammalian and amphibian cell lines. Transmission electron microscopy revealed a unique morphology of the bacterium, including intravacuolar localization of bacteria grouped predominantly in pairs and internal structures composed of electron-dense crystal-like structures and regular multilayer sheath-like structures. The isolate 20B was characterized to determine its taxonomic position using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that this strain belongs to the family Coxiellaceae, order Legionellales of Gamma-proteobacteria, and the closest relatives are different Rickettsiella spp. The level of 16S rRNA gene sequence similarity between strain 20B and other recognized species of the family was below 94.5%. Partial sequences of the rpoB, parC and ftsY genes confirmed the phylogenetic position of the new isolate. The G+C content estimated on the basis of whole genome analysis of strain 20B was 37.88%. On the basis of its phenotypic and genotypic properties, together with phylogenetic distinctiveness, we propose that strain 20B to be classified in the new genus Diplorickettsia as the type strain of a novel species named Diplorickettsia massiliensis sp. nov. Conclusions/Significance: Considering the source of its isolation (hard tick, often biting humans) the role of this bacterium in the pathology of humans, animals and ticks should be further investigated

    High-quality genome sequence and description of Paenibacillus dakarensis sp. nov.

    Get PDF
    AbstractStrain FF9T was isolated in Dakar (Senegal) from a blood-culture taken from a 16-month-old child. MALDI-TOF analysis did not allow for identification. After sequencing, strain FF9T exhibited 98.18% similarity with the 16SrRNA sequence of Paenibacillus uliginis. A polyphasic study of phenotypic and genomic analyses showed that strain FF9T is Gram variable, catalase-positive, and presents a genome of 4,569,428 bp (one chromosome but no plasmid) with 4,427genes (4,352 protein-coding and 75 RNA genes (including 3 rRNA operons). The G+C content is 45.7%. On the basis of these genomic and phenotypic data analyses, we propose the creation of Paenibacillus dakarensis strain FF9T

    Zoonotic abbreviata caucasica in wild chimpanzees (Pan troglodytes verus) from Senegal

    Get PDF
    Abbreviata caucasica (syn. Physaloptera mordens) has been reported in human and various non-human primates including great apes. The identification of this nematode is seldom performed and relies on egg characterization at the coproscopy, in the absence of any molecular tool. Following the recovery of two adult females of A. caucasica from the feces of wild Senegalese chimpanzees, morphometric characteristics were reported and new data on the width of the esophagus (0.268– 0.287 mm) and on the cuticle structure (0.70–0.122 mm) were provided. The molecular characterization of a set of mitochondrial (cox1, 16S rRNA, 12S rRNA) and nuclear (18S rRNA and ITS2) partial genes was performed. Our phylogenetic analysis indicates for the first time that A. caucasica is monophyletic with Physaloptera species. A novel molecular tool was developed for the routine diagnosis of A. caucasica and the surveillance of Nematoda infestations. An A. caucasica-specific qPCR targeting the 12S gene was assessed. The assay was able to detect up to 1.13 × 10−3 eggs/g of fecal matter irrespective of its consistency, with an efficiency of 101.8% and a perfect adjustment (R2 = 0.99). The infection rate by A. caucasica in the chimpanzee fecal samples was 52.08%. Only 6.19% of the environmental samples were positive for nematode DNA and any for A. caucasica. Our findings indicate the need for further studies to clarify the epidemiology, circulation, life cycle, and possible pathological effects of this infestation using the molecular tool herein developed

    Identification of novel Coxiella burnetii genotypes from Ethiopian ticks

    Get PDF
    Background: Coxiella burnetii , the etiologic agent of Q fever, is a highly infectious zoonotic bacterium. Genetic information about the strains of this worldwide distributed agent circulating on the African continent is limited. The aim of the present study was the genetic characterization of C. burnetii DNA samples detected in ticks collected from Ethiopian cattle and their comparison with other genotypes found previously in other parts of the world. Methodology/Principal Findings: A total of 296 tick samples were screened by real-time PCR targeting the IS 1111 region of C. burnetii genome and from the 32 positive samples, 8 cases with sufficient C. burnetii DNA load ( Amblyomma cohaerens ,n 5 6; A. variegatum ,n 5 2) were characterized by multispacer sequence typing (MST) and multiple-locus variable-number tandem repeat analysis (MLVA). One novel sequence type (ST), the proposed ST52, was identified by MST. The MLVA-6 discriminated the proposed ST52 into two newly identified MLVA genotypes: type 24 or AH was detected in both Amblyomma species while type 26 or AI was found only in A. cohaerens . Conclusions/Significance: Both the MST and MLVA genotypes of the present work are closely related to previously described genotypes found primarily in cattle samples from different parts of the globe. This finding is congruent with the source hosts of the analyzed Ethiopian ticks, as these were also collected from cattle. The present study provides genotype information of C. burnetii from this seldom studied East-African region as well as further evidence for the presumed host-specific adaptation of this agent

    Genomotyping of Coxiella burnetii Using Microarrays Reveals a Conserved Genomotype for Hard Tick Isolates

    Get PDF
    C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10 genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates, including the Nine Mile strain, belong to the same genomotype

    Coxiella burnetii in Humans and Ticks in Rural Senegal

    Get PDF
    Q fever is a zoonotic disease known since 1937. The disease may be severe, causing pneumonia, hepatitis and endocarditis. Q fever agent has been described as a possible biological weapon. Animals—especially domestic cows, goats and sheep—are considered reservoirs for this infection. They are capable of sustaining the infection for long periods and excreting viable bacteria, infecting other animals and, occasionally, humans. Here we studied the distribution of Q fever in a poorly studied region, Senegal. We studied the agent of Q fever both in ticks parasitizing domestic animals and in humans (antibodies in serum, bacteria in feces, saliva and milk). We found from the studied regions the bacterium is highly prevalent in rural Senegal. Up to 37.6% of five different and most prevalent tick species may carry the bacterium. Humans living in such areas, as other mammals, may occasionally excrete Q fever agent through feces and milk

    Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri

    Get PDF
    The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria

    A Rickettsiella Bacterium from the Hard Tick, Ixodes woodi: Molecular Taxonomy Combining Multilocus Sequence Typing (MLST) with Significance Testing

    Get PDF
    Hard ticks (Acari: Ixodidae) are known to harbour intracellular bacteria from several phylogenetic groups that can develop both mutualistic and pathogenic relationships to the host. This is of particular importance for public health as tick derived bacteria can potentially be transmitted to mammals, including humans, where e.g. Rickettsia or Coxiella act as severe pathogens. Exact molecular taxonomic identification of tick associated prokaryotes is a necessary prerequisite of the investigation of their relationship to both the tick and possible vertebrate hosts. Previously, an intracellular bacterium had been isolated from a monosexual, parthenogenetically reproducing laboratory colony of females of the hard tick, Ixodes woodi Bishopp, and had preliminarily been characterized as a “Rickettsiella-related bacterium”. In the present molecular taxonomic study that is based on phylogenetic reconstruction from both 16 S ribosomal RNA and protein-encoding marker sequences complemented with likelihood-based significance testing, the bacterium from I. woodi has been identified as a strain of the taxonomic species Rickettsiella grylli. It is the first time that a multilocus sequence typing (MLST) approach based on a four genes comprising MLST scheme has been implemented in order to classify a Rickettsiella-like bacterium to this species. The study demonstrated that MLST holds potential for a better resolution of phylogenetic relationships within the genus Rickettsiella, but requires sequence determination from further Rickettsiella-like bacteria in order to complete the current still fragmentary picture of Rickettsiella systematics
    corecore