97 research outputs found

    The curious nonexistence of Gaussian 2-designs

    Full text link
    2-designs -- ensembles of quantum pure states whose 2nd moments equal those of the uniform Haar ensemble -- are optimal solutions for several tasks in quantum information science, especially state and process tomography. We show that Gaussian states cannot form a 2-design for the continuous-variable (quantum optical) Hilbert space L2(R). This is surprising because the affine symplectic group HWSp (the natural symmetry group of Gaussian states) is irreducible on the symmetric subspace of two copies. In finite dimensional Hilbert spaces, irreducibility guarantees that HWSp-covariant ensembles (such as mutually unbiased bases in prime dimensions) are always 2-designs. This property is violated by continuous variables, for a subtle reason: the (well-defined) HWSp-invariant ensemble of Gaussian states does not have an average state because the averaging integral does not converge. In fact, no Gaussian ensemble is even close (in a precise sense) to being a 2-design. This surprising difference between discrete and continuous quantum mechanics has important implications for optical state and process tomography.Comment: 9 pages, no pretty figures (sorry!

    The Mitotic Arrest Deficient Protein MAD2B Interacts with the Clathrin Light Chain A during Mitosis

    Get PDF
    Contains fulltext : 87811.pdf (publisher's version ) (Open Access)BACKGROUND: Although the mitotic arrest deficient protein MAD2B (MAD2L2) is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1 (FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: Using a yeast two-hybrid interaction trap we identified the human clathrin light chain A (CLTA) as a novel MAD2B binding protein. A direct interaction was established in mammalian cells via GST pull-down and endogenous co-immunoprecipitation during the G2/M phase of the cell cycle. Through subsequent confocal laser scanning microscopy we found that MAD2B and CLTA co-localize at the mitotic spindle. Clathrin forms a trimeric structure, i.e., the clathrin triskelion, consisting of three heavy chains (CLTC), each with an associated light chain. This clathrin structure has previously been shown to be required for the function of the mitotic spindle through stabilization of kinetochore fibers. Upon siRNA-mediated MAD2B depletion, we found that CLTA was no longer concentrated at the mitotic spindle but, instead, diffusely distributed throughout the cell. In addition, we found a marked increase in the percentage of misaligned chromosomes. CONCLUSIONS/SIGNIFICANCE: Previously, we identified MAD2B as an interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and a concomitant failure to shuttle MAD2B to the nucleus. Our current data show that MAD2B interacts with CLTA during the G2/M phase of the cell cycle and that depletion of MAD2B leads to a marked increase in the percentage of misaligned chromosomes and a redistribution of CLTA during mitosis

    Validation of the Dutch version of the health education impact questionnaire (HEIQ) and comparison of the Dutch translation with the English, German and French HEIQ

    Get PDF
    BACKGROUND: The Health Education Impact Questionnaire (heiQ) evaluates the effectiveness of health education and self-management programs provided to people dealing with a wide range of conditions. Aim of this study was to translate, culturally adapt and validate the Dutch translation of the heiQ and to compare the results with the English, German and French translations. METHODS: A systematic translation process was undertaken. Psychometric properties were studied among patients with arthritis, atopic dermatitis, food allergy and asthma (n = 286). Factorial validity using confirmatory factor analysis, item difficulty (D), item remainder correlation and composite reliability were conducted. Stability was tested using the intra-class correlation coefficient (ICC). RESULTS: Items were well understood and only minor language adjustments were required. Confirmatory fit indices were >0.95 and item difficulty was D ≥ 0.65 for all items in scales showing acceptable fit indices, except for the reversed Emotional distress scale. Composite reliability ranged between 0.67 and 0.85. Test-retest reliability (n = 93) ICC varied between 0.61 and 0.84. Comparisons with other translations showed comparable fit indices. A lower ICC on Self-monitoring and insight scale was observed. CONCLUSIONS: The Dutch translation of the heiQ was found to be well understood and user friendly by patients with Rheumatoid Arthritis, Atopic Dermatitis, Food allergy and asthma and to have robust psychometric properties for evaluating the impact of health education and self-management programs. Given the wide applications of the heiQ and the comparability of the Dutch results with the English, German and French version, the heiQ is a practical and useful questionnaire to evaluate the impact of self-management support programs in different countries and populations with different diseases

    The Mitotic Arrest Deficient Protein MAD2B Interacts with the Small GTPase RAN throughout the Cell Cycle

    Get PDF
    Contains fulltext : 81260.pdf (publisher's version ) (Open Access)BACKGROUND: Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: Using a yeast two-hybrid interaction trap we identified the small GTPase RAN, a well-known cell cycle regulator, as a novel MAD2B binding protein. Endogenous interaction was established in mammalian cells via co-localization and co-immunoprecipitation of the respective proteins. The interaction domain of RAN could be assigned to a C-terminal moiety of 60 amino acids, whereas MAD2B had to be present in its full-length conformation. The MAD2B-RAN interaction was found to persist throughout the cell cycle. During mitosis, co-localization at the spindle was observed. CONCLUSIONS/SIGNIFICANCE: The small GTPase RAN is a novel MAD2B binding protein. This novel protein-protein interaction may play a role in (i) the control over the spindle checkpoint during mitosis and (ii) the regulation of nucleocytoplasmic trafficking during interphase

    Evidence for the predictive remapping of visual attention

    Get PDF
    When attending an object in visual space, perception of the object remains stable despite frequent eye movements. It is assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Remapping is predictive when it starts before the actual eye movement. Until now, most evidence for predictive remapping has been obtained in single cell studies involving monkeys. Here, we report that predictive remapping affects visual attention prior to an eye movement. Immediately following a saccade, we show that attention has partly shifted with the saccade (Experiment 1). Importantly, we show that remapping is predictive and affects the locus of attention prior to saccade execution (Experiments 2 and 3): before the saccade was executed, there was attentional facilitation at the location which, after the saccade, would retinotopically match the attended location

    Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas

    Get PDF
    Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic cystic neoplasm that is often invasive and metastatic, resulting in a poor prognosis. Few molecular alterations unique to IPMN are known. We performed whole-exome sequencing for a primary IPMN tissue, which uncovered somatic mutations in KCNF1, DYNC1H1, PGCP, STAB1, PTPRM, PRPF8, RNASE3, SPHKAP, MLXIPL, VPS13C, PRCC, GNAS, KRAS, RBM10, RNF43, DOCK2, and CENPF. We further analyzed GNAS mutations in archival cases of 118 IPMNs and 32 pancreatic ductal adenocarcinomas (PDAs), which revealed that 48 (40.7%) of the 118 IPMNs but none of the 32 PDAs harbored GNAS mutations. G-protein alpha-subunit encoded by GNAS and its downstream targets, phosphorylated substrates of protein kinase A, were evidently expressed in IPMN; the latter was associated with neoplastic grade. These results indicate that GNAS mutations are common and specific for IPMN, and activation of G-protein signaling appears to play a pivotal role in IPMN

    What is ‘anti’ about anti-reaches? Reference frames selectively affect reaction times and endpoint variability

    Get PDF
    Reach movement planning involves the representation of spatial target information in different reference frames. Neurons at parietal and premotor stages of the cortical sensorimotor system represent target information in eye- or hand-centered reference frames, respectively. How the different neuronal representations affect behavioral parameters of motor planning and control, i.e. which stage of neural representation is relevant for which aspect of behavior, is not obvious from the physiology. Here, we test with a behavioral experiment if different kinematic movement parameters are affected to a different degree by either an eye- or hand-reference frame. We used a generalized anti-reach task to test the influence of stimulus-response compatibility (SRC) in eye- and hand-reference frames on reach reaction times, movement times, and endpoint variability. While in a standard anti-reach task, the SRC is identical in the eye- and hand-reference frames, we could separate SRC for the two reference frames. We found that reaction times were influenced by the SRC in eye- and hand-reference frame. In contrast, movement times were only influenced by the SRC in hand-reference frame, and endpoint variability was only influenced by the SRC in eye-reference frame. Since movement time and endpoint variability are the result of planning and control processes, while reaction times are consequences of only the planning process, we suggest that SRC effects on reaction times are highly suited to investigate reference frames of movement planning, and that eye- and hand-reference frames have distinct effects on different phases of motor action and different kinematic movement parameters

    The effects of visual control and distance in modulating peripersonal spatial representation

    Get PDF
    In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual’s reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI) was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand–about 15 cm from the starting position–vs. far from the hand–about 30 cm from the starting position). Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets

    How Bodies and Voices Interact in Early Emotion Perception

    Get PDF
    Successful social communication draws strongly on the correct interpretation of others' body and vocal expressions. Both can provide emotional information and often occur simultaneously. Yet their interplay has hardly been studied. Using electroencephalography, we investigated the temporal development underlying their neural interaction in auditory and visual perception. In particular, we tested whether this interaction qualifies as true integration following multisensory integration principles such as inverse effectiveness. Emotional vocalizations were embedded in either low or high levels of noise and presented with or without video clips of matching emotional body expressions. In both, high and low noise conditions, a reduction in auditory N100 amplitude was observed for audiovisual stimuli. However, only under high noise, the N100 peaked earlier in the audiovisual than the auditory condition, suggesting facilitatory effects as predicted by the inverse effectiveness principle. Similarly, we observed earlier N100 peaks in response to emotional compared to neutral audiovisual stimuli. This was not the case in the unimodal auditory condition. Furthermore, suppression of beta–band oscillations (15–25 Hz) primarily reflecting biological motion perception was modulated 200–400 ms after the vocalization. While larger differences in suppression between audiovisual and audio stimuli in high compared to low noise levels were found for emotional stimuli, no such difference was observed for neutral stimuli. This observation is in accordance with the inverse effectiveness principle and suggests a modulation of integration by emotional content. Overall, results show that ecologically valid, complex stimuli such as joined body and vocal expressions are effectively integrated very early in processing
    • …
    corecore