116 research outputs found

    Improved piezoelectric properties of PLA/PZT hybrid composite films

    Get PDF
    Piezoelectric polymer-ceramic composites are promising materials for Sensing, Wireless electronics and actuating applications. We report the fabrication of highly piezoelectric biocompatible films containing lead zirconate titanate (PZT) ferroelectric ceramic particles dispersed in poly lactic acid (PLA) with different volume fractions using a solvent cast technique. The properties of the piezoelectric polymer-ceramic films were investigated by Fourier transform infrared spectrometry (FTIR) and field emission scanning electron microscopy (FE-SEM). In the FTIR spectra appear a large number of absorption bands which are attributed to the phases from PLA matrix confirming the total embedding of PZT filler into the matrix. The SEM results showed a good distribution of fillers in the matrix. We find that the added PZT imposes a significant effect on the α–β phase transformation. Our finding can lead to extraordinary enhancement of piezoelectric properties for the PLA/PZT composite films

    Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress

    Get PDF
    Two native Algerian mycorrhizal fungi (Glomus mosseae and Glomus intraradices) were tested for their effect on the growth of micropropagated olive tree (Olea europaea L.). The effect of inoculation of plantlets with G. mosseae was also compared with chemical fertilization using osmocote. Specific molecular techniques were then used to detect the presence of the two fungi. Highly significant increases in growth were evident for inoculated plants compared with uninoculated ones. For a slightly lower shoot growth, G. mosseae doubled the root growth of the inoculated plantlets, compared to that of the fertilized plants. This change in the root: shoot ratio permitted greater utilization of soil resources and strengthened the plant’s capacity to resist transplantation shock and water stress. The abundance of the two fungi in the roots of wild olives just as in the inoculated olives is indicative of thepredominance of G. intraradices when the natural microflora is present

    Mechanical characterization of an electrostrictive polymer for actuation and energy harvesting

    Get PDF
    Electroactive polymers have been widely used as smart material for actuators in recent years. Electromechanical applications are currently focused on energy harvesting and actuation, including the development of wireless portable electronic equipment autonomous and specific actuators such as artificial muscles. The problem to be solved is to make its devices the most efficient, as possible in terms of harvested energy and action. These two criteria are controlled by the permittivity of the electrostrictive polymer used, the Young\u27s modulus, and their dependence on frequency and level of stress. In the present paper, we presented a model describing the mechanical behaviour of electrostrictive polymers with taking into account the mechanical losses. Young\u27s modulus follows a linear function of strain and stress. However, when the elongation becomes higher, the data obtained from this strain linear trend and significant hysteresis loops appear the reflections on the existence of mechanical losses. In this work, to provide the analysis of the experimental observations, we utilized a theoretical model in order to define a constitutive law implying a representative relationship between stress and strain. After detailing this theoretical model, the simulation results are compared with experimental ones. The results show that hysteresis loss increases with the increase of frequency and strain amplitude. The model used here is in good agreement with the experimental results

    Enhancement of electrostrictive polymer efficiency for energy harvesting with cellular polypropylene electrets

    Get PDF
    The purpose of this paper is to propose new means for harvesting energy using electrostrictive polymers. The recent development of electrostrictive polymers has generated new opportunities for high-strain actuators. At the current time, the investigation of using electrostrictive polymer for energy harvesting, or mechanical-to-electrical energy conversion, is beginning to show its potential for this application. The objective of this work was to study the effect of cellular polypropylene electrets after high-voltage corona poling on an electrostrictive polyurethane composite filled with 1 vol.% carbon black at a low applied voltage in order to increase the efficiency of the electromechanical conversion with electrostrictive polymers. Theoretical analysis supported by experimental investigations showed that an energy harvesting with this structure rendered it possible to obtain harvested power up to 13.93 nW using a low electric field of 0.4 V/mu m and a transverse strain of 3% at a mechanical frequency of 15 Hz. This represents an efficiency of 78.14% at low frequency. This percentage is very significant compared to other structures. Finally, it was found that the use of polypropylene electrets with electrostrictive polymers was the best way to decrease the power of polarization in order to obtain a good efficiency of the electromechanical conversion for energy harvesting

    Modelling and diagnostic of an ultrasonic piezoelectric actuator

    Get PDF
    Modeling of piezoelectric motors is a difficult task because their characteristics are affected by various factors such as materials properties, electrical and mechanical boundary conditions. This work presents the modeling of piezoelectric motor via bond graph method and used for the diagnostic. This method is an innovative way to analyse the effects of different design variables on the objective function but can be also considered as an optimization stage of the study. The validation and the development of bond graph models are based on physical insight to aid in structural damage detection and use the technique of optimal sensors placement

    Enhanced piezoelectric properties of PVdF-HFP/PZT nanocomposite for energy harvesting application

    Get PDF
    The use of piezoelectric nanocomposite in detection and actuation applications for the development of electromechanical microsystems (MEMS) has become quite common over the last decade. In this paper, we present a flexible piezoelectric nanocomposite films, composed of lead zirconate titanate (PZT) nanoparticles, embedded in poly(vinylidene-difluoride hexafluoro propylene) (PVdF-HFP) matrix. Piezoelectric and ferroelectric properties evolution is proportional to the evolution of the crystalline β-phase. The evaluation of the interactions between PZT and PVdF- HFP, performed by Fourier transform infrared spectroscopy (FTIR), revealed a dramatic improvement in these characteristics over pure PVdF-HFP, and attributed to a better crystallinity of the PVdF-HFP matrix and uniform distribution of nanoparticles. These films nanocomposites were done by solvent casting method, with various concentrations of PZT. Results of these experiments indicate that the investigated thin films nanocomposites are appropriate for various applications in energy storage and energy harvesting application

    An enhanced power harvesting from woven textile using piezoelectric materials

    Get PDF
    The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. The present work aims to introduce an approach to harvesting electrical energy from a mechanically excited piezoelectric element and investigates a power analytical model generated by a smart structure of type polyvinylidene fluoride(PVDF) that can be stuck onto fabrics and flexible substrates. Moreover, we report the effects of various substrates and investigates the sticking of these substrates on the characterization of the piezoelectric material

    Multimodal Vibration Damping of a Smart Beam Structure using Modal SSDI-Max Technique

    Get PDF
    Advanced materials such as carbon fiber, composite materials et al. are more and more used in modern industry. They make the structures lighter and Stiffer. However, they bring vibration problems. Researchers studied numerous methods to eliminate the undesirable vibrations. These treatments are expected to be a compact, light, intellectual and modular system. Recently, nonlinear techniques which are known as Synchronized Switch Damping (SSD) technique was proposed. These techniques synchronously switched when structure got to its displacement extremes that leading to a nonlinear voltage on the piezoelectric elements. This paper presents a performance analysis of an improved modal SSDI approach called "SSDI Max". The particularity of this new approach is to maximize the self generated voltage amplitude by a proper definition of the switch instants according to the chosen targeted mode. This paper presents simulations performed on a model representative of a smart beam. Damping results are given in the case of multimodal excitations. The paper analyses the control time window influence on the damping performance of the system. Results show that substantial damping increase can be obtained with very slight modification of the control architecture and the same control energy

    Flexible Smart Textile Coated by PVDF/Graphene Oxide With Excellent Energy Harvesting Toward a Novel Class of Self-Powered Sensors: Fabrication, Characterization and Measurements

    Get PDF
    Because of some of their diverse benefits, intelligent textiles have attracted a great deal of interest among specialists over the past decade. This paper describes a novel approach to the manufacture of intelligent piezoelectric polymer-based textiles with enhanced piezoelectric responses for applications that extract biomechanical energy. Here we report a highly scalable and ultrafast production of smart textile piezoelectric containing graphene oxide nanosheets (GONS) dispersed in polyvinylidene fluoride (PVDF). In this work, Cotton textiles (CT) were functionalized and by graphene oxide (GO), using PVDF as a binder to obtain a CT-PVDF-GO material. Tetraethyl orthosilicate (TEOS) was further grafted as a coating layer to improve the surface compatibility, resulting in the CT-PVDF-GO-TEOS composite. The research results show that the addition of GONS significantly improves PVDF's overall crystallization rate on CT. More specifically, the piezoelectric β-phase content (100 % higher F[β]) and crystallinity degree on the piezoelectric properties of composite cotton fiber has been improved effectively. Consequently, this fabricated piezo-smart textile has a glorious piezoelectricity even with comparatively low coating content of PVDF-GONS-TEOS. Based on it, the as-fabricated piezoelectric textile device has resulted in the output voltage of up to 13 mV for a given frequency (fm = 8 Hz) at fixed strain amplitude value (0.5 %). It is believed that this research may further reveal the field of energy harvesting for possible applications in the future.. In addition, the set of experimental results that illustrate the smart textile was carried out and discussed, and how it can be used as a wearable device source for this smart textile. Finally, the approach described in this study can also be used to construct other desirable designs, for a wearable low-consumption sensor, etc
    • …
    corecore