576 research outputs found

    La grille au service du développement médical en Afrique

    Get PDF
    PCSV, présenté par F. Jacq, pas de proceedingsObjectives: Telemedicine networks allow to train local physicians and to improve diagnosis by exchanging medical data. But the set-up of multipoint dynamic telemedicine requires moving towards GRID technologies. The objective is to develop telemedicine services for physicians from Burkina Faso and France with the perspective of setting up a grid infrastructure between the participating medical sites. Methods: A web site to exchange diagnosis on diabetic retinopathy was developed in PHP. Another application using web services was developed to exchange patient information on ophthalmology between two databases. Results: The main difficulty comes from limited resources in developing countries including staff skills, bandwidth and funding. But the collaboration with dispensaries opened a door to enhanced collaboration between physicians of France and Burkina Faso Conclusions: These applications are designed with the aim of their use on grids which opens the perspective of multipoint dynamic telemedicine. We are developing a new generation of telemedicine service using experience acquired in the last two years

    Biphoton compression in standard optical fiber: exact numerical calculation

    Full text link
    Generation of two-photon wavepackets, produced by spontaneous parametric down conversion in crystals with linearly chirped quasi-phase matching grating, is analyzed. Although being spectrally broad, two-photon wavepackets produced this way are not Fourier transform limited. In the paper we discuss the temporal compression of the wavepackets, exploiting the insertion of a standard optical fiber in the path of one of the two photons. The effect is analyzed by means of full numerical calculation and the exact dispersion dependencies in both the crystal and the fiber are considered. The study opens the way to the practical realization of this idea.Comment: 10 pages, 16 figure

    Anti-proliferative effect of Scoparia dulcis L. against bacterial and fungal strains

    Get PDF
    Scoparia dulcis L. was sequentially extracted with hexane, chloroform and methanol and soaked with aqueous-acetone (80%) to check for its antimicrobial activities against five bacterial and four fungal strains.250μg of each extract loaded on a whatman paper disc exhibited significant antimicrobial activities on all the fungus and against Gram-negative and Gram-positive bacteria. Therefore, P. mirabilis is less sensitive to all the extracts while B. cereus, a â-lactamase producer bacterium, was resistant to the activity of the polar methanol and aqueous-acetone extracts. By the microdilution method, the most active extracts were chloroform extract on B. cereus with minimal inhibitory concentration (MIC) of 1.56 mg/ml and Aqueous-acetone extract on S. typhimurium (MIC = 1.56 mg/ml); the antifungal activity was strongest for hexane extract (MIC = 6.25 mg/ml) on both A. niger and P. roquefortii.Keywords: Scoparia dulcis, Antibacterial, Antifungal, Polyphenols

    Towards grid-enabled telemedicine in Africa

    Get PDF
    Telemedicine services are very relevant tools to train local physicians and to improve diagnosis by exchanging medical data. Telemedicine networks allow these exchanges but the set-up of multipoint dynamic telemedicine requires moving towards GRID technologies. A healthgrid is an environment where data of medical interest can be stored and is easily available between the different actors of healthcare. Two telemedicine applications were developed to link physicians from Burkina Faso and France with the perspective of setting up a grid infrastructure between the participating medical sites. A web site to exchange diagnosis on diabetic retinopathy was developed in PHP and another application using web services was developed to exchange patient information between two databases.Comment: 7 pages, 1 figure, IST-Africa 2006 Conference, Pretoria, South Africa, to be published in the proceeding

    Cx36 makes channels coupling human pancreatic β-cells, and correlates with insulin expression

    Get PDF
    Previous studies have documented that the insulin-producing β-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes β-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with β-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of β-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the β-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human β-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing β-cells, and contributes to control β-cell function by modulating gene expressio

    GIS integration of DInSAR measurements, geological investigation and historical surveys for the structural monitoring of buildings and infrastructures. An application to the Valco San Paolo urban area of Rome

    Get PDF
    Structural health monitoring is a crucial issue in areas with different hazard sources, such as Italy. Among non-invasive monitoring techniques, remote sensing provides useful information in supporting the management process and safety evaluations, reducing the impact of disturbances on the functionality of construction systems. The ground displacement time-series based on the analysis of Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, as well as the information about the geology of the area and the geometry of the construction under monitoring, provides useful data for the built environment's structural assessment. This paper focuses on the structural monitoring and damage assessment of constructions based on the GIS integration of DInSAR measurements, geological investigation, historical surveys and 3D modeling. The methodology is applied to the residential area of Valco San Paolo in the city of Rome (Italy). Once the geological interpretation has confirmed the results of the DInSAR measurements, a quick damage assessment that considers all the possible conditions of the pre-existing damage at the time zero of the monitoring is shown for a damaged manufact in the area. The presented results highlight how the strategy to correlate the DInSAR-monitored ground settlements with the damage scales allows potentially to monitor continuous construction systems

    Cx36 makes channels coupling human pancreatic β-cells, and correlates with insulin expression

    Get PDF
    Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.The Swiss National Science Foundation (310000-122430 to P.Me), the Juvenile Diabetes Research Foundation (1-2005-1084 to V.C., 1-2007-158 to P.Me), the National Institute of Health (DK55183 to V.C.), the European Union (FP6-Integrated Project EuroDia LSHM-CT-2006-518153 to P.Ma; FP-7 BETAIMAGE 222980 to P.Me), Novo Nordisk (to P.Me) and The Larry L. Hillblom Foundation (to V.C.). Image analysis was performed at The National Center for Microscopy and Imaging Research (NIH grant RR4050 to M. Ellisman). Fresh human islets were provided by the Cell Isolation and Transplantation Cente

    Biocompatible polymeric microparticles produced by a simple biomimetic approach

    Get PDF
    The use of superhydrophobic surfaces to produce polymeric particles proves to be biologically friendly since it entails the pipetting and subsequent cross-linking of polymeric solutions under mild experimental conditions. Moreover, it renders encapsulation efficiencies of ∼100%. However, the obtained particles are 1 to 2 mm in size, hindering to a large extent their application in clinical trials. Improving on this technique, we propose the fabrication of polymeric microparticles by spraying a hydrogel precursor over superhydrophobic surfaces followed by photo-cross-linking. The particles were produced from methacrylamide chitosan (MA-CH) and characterized in terms of their size and morphology. As demonstrated by optical and fluorescence microscopy, spraying followed by photo-cross-linking led, for the first time, to the production of spherical particles with diameters on the order of micrometers, nominal sizes not attainable by pipetting. Particles such as these are suitable for medical applications such as drug delivery and tissue engineering.We thank Ivo Aroso and Ana Isabel Neto for their valuable support with FTIR and compression experiments, respectively. A.M.S.C. thanks FCT for financial support through grant BIM/PTDC/CTM-BPC/112774/2009_02. M.A.-M. thanks CONACyT (Mexico) for financial support through post-doc grant no. 203732. N.M.O. thanks FCT for financial support through Ph.D. scholarship no. SFRH/BD/73172/2010. This work was funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS, by FEDER through the Competitive Factors Operation Program-COMPETE, and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia in the scope of project PTDC/CTM-BIO/1814/2012
    • …
    corecore