195 research outputs found

    Clock Speed as a Window into Dopaminergic Control of Emotion and Time Perception

    Get PDF
    © 2016 by Koninklijke Brill NV, Leiden, The Netherlands.Although fear-producing treatments (e.g., electric shock) and pleasure-inducing treatments (e.g., methamphetamine) have different emotional valences, they both produce physiological arousal and lead to effects on timing and time perception that have been interpreted as reflecting an increase in speed of an internal clock. In this commentary, we review the results reported by Fayolle et al. (2015): Behav. Process., 120, 135-140) and Meck (1983: J. Exp. Psychol. Anim. Behav. Process., 9, 171-201) using electric shock and by Maricq et al. (1981: J. Exp. Psychol. Anim. Behav. Process., 7, 18-30) using methamphetamine in a duration-bisection procedure across multiple duration ranges. The psychometric functions obtained from this procedure relate the proportion 'long' responses to signal durations spaced between a pair of 'short' and 'long' anchor durations. Horizontal shifts in these functions can be described in terms of attention or arousal processes depending upon whether they are a fixed number of seconds independent of the timed durations (additive) or proportional to the durations being timed (multiplicative). Multiplicative effects are thought to result from a change in clock speed that is regulated by dopamine activity in the medial prefrontal cortex. These dopaminergic effects are discussed within the context of the striatal beat frequency model of interval timing (Matell & Meck, 2004: Cogn. Brain Res., 21, 139-170) and clinical implications for the effects of emotional reactivity on temporal cognition (Parker et al., 2013: Front. Integr. Neurosci., 7, 75)

    A Neural Correlate of the Processing of Multi-Second Time Intervals in Primate Prefrontal Cortex

    Get PDF
    Several areas of the brain are known to participate in temporal processing. Neurons in the prefrontal cortex (PFC) are thought to contribute to perception of time intervals. However, it remains unclear whether the PFC itself can generate time intervals independently of external stimuli. Here we describe a group of PFC neurons in area 9 that became active when monkeys recognized a particular elapsed time within the range of 1–7 seconds. Another group of area 9 neurons became active only when subjects reproduced a specific interval without external cues. Both types of neurons were individually tuned to recognize or reproduce particular intervals. Moreover, the injection of muscimol, a GABA agonist, into this area bilaterally resulted in an increase in the error rate during time interval reproduction. These results suggest that area 9 may process multi-second intervals not only in perceptual recognition, but also in internal generation of time intervals

    Relativistic Compression and Expansion of Experiential Time in the Left and Right Space

    Get PDF
    Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constituted by black circles. The duration of the reference stimulus was fixed at 300 ms. Subjects had to indicate the relative duration of the test stimulus compared with the reference one. The main results showed that, regardless of digit magnitude, duration of stimuli presented in the left hemispace is underestimated and that of stimuli presented in the right hemispace is overestimated. On the other hand, in midline position, duration judgments are affected by the numerical magnitude of the presented stimulus, with time underestimation of stimuli of low magnitude and time overestimation of stimuli of high magnitude. These results argue for the presence of strict interactions between space, time and magnitude representation on the human brain

    Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS

    Get PDF
    Involvement of the dorsal hippocampus (DHPC) in conditioned-response timing and maintaining temporal information across time gaps was examined in an appetitive Pavlovian conditioning task, in which rats with sham and DHPC lesions were first conditioned to a 15-s visual cue. After acquisition, the subjects received a series of non-reinforced test trials, on which the visual cue was extended (45 s) and gaps of different duration, 0.5, 2.5, and 7.5 s, interrupted the early portion of the cue. Dorsal hippocampal-lesioned subjects underestimated the target duration of 15 s and showed broader response distributions than the control subjects on the no-gap trials in the first few blocks of test, but the accuracy and precision of their timing reached the level of that of the control subjects by the last block. On the gap trials, the DHPC-lesioned subjects showed greater rightward shifts in response distributions than the control subjects. We discussed these lesion effects in terms of temporal versus non-temporal processing (response inhibition, generalisation decrement, and inhibitory conditioning)

    Choice biases in no-sample and delay testing in pigeons (Columba livia)

    Get PDF
    In experimental tasks that involve stimuli that vary along a quantitative continuum, some choice biases are commonly found. Take, for instance, a matching-to-sample task where animals must, following the presentation of sample stimuli (that differ in duration), choose between two or more comparison stimuli. In tests where no sample is presented there is usually a bias towards the comparison that is correct following the shortest sample. To examine some aspects of these choice biases, pigeons were trained in a symbolic matching-to-sample task with two durations of keylight as samples, where key pecking had to be maintained during sample presentation. Firstly, even though animals were required to attend to the sample, a preference for the "short" comparison in no-sample testing was found. This result disproves an account where this effect was hypothesized to happen due to non-programmed learning resulting from the animals failing to attend to some trials. Secondly, even though a bias for "short" was found in both no-sample and delay testing, the extent of the biases differed between tasks, thus suggesting that forgetting the sample presented during a delay does not necessarily land the animal in a state similar to presenting no sample at all to begin with.The present study was supported by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Science, Technology and Higher Education through national funds. It was also co-financed by the European Regional Development Fund (FEDER)-through COMPETE2020-under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007653)

    A biologically plausible model of time-scale invariant interval timing

    Get PDF
    The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing

    Numerical magnitude affects temporal memories but not time encoding

    Get PDF
    Previous research has suggested that the perception of time is influenced by concurrent magnitude information (e.g., numerical magnitude in digits, spatial distance), but the locus of the effect is unclear, with some findings suggesting that concurrent magnitudes such as space affect temporal memories and others suggesting that numerical magnitudes in digits affect the clock speed during time encoding. The current paper reports 6 experiments in which participants perceived a stimulus duration and then reproduced it. We showed that though a digit of a large magnitude (e.g., 9), relative to a digit of a small magnitude (e.g., 2), led to a longer reproduced duration when the digits were presented during the perception of the stimulus duration, such a magnitude effect disappeared when the digits were presented during the reproduction of the stimulus duration. These findings disconfirm the account that large numerical magnitudes accelerate the speed of an internal clock during time encoding, as such an account incorrectly predicts that a large numerical magnitude should lead to a shorter reproduced duration when presented during reproduction. Instead, the findings suggest that numerical magnitudes, like other magnitudes such as space, affect temporal memories when numerical magnitudes and temporal durations are concurrently held in memory. Under this account, concurrent numerical magnitudes have the chance to influence the memory of the perceived duration when they are presented during perception but not when they are presented at the reproduction stage

    Time Changes with the Embodiment of Another’s Body Posture

    Get PDF
    The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system
    corecore