65 research outputs found

    Comprehensive pharmacogenetic profiling of the epidermal growth factor receptor pathway for biomarkers of response to, and toxicity from, cetuximab

    Get PDF
    Background Somatic mutations in the epidermal growth factor receptor (EGFR) intracellular signalling pathways predict non-response to cetuximab in the treatment of advanced colorectal cancer (aCRC). We hypothesized that common germline variants within these pathways may also play similar roles. Methods We analysed 54 potentially functional, common, inherited EGFR pathway variants in 815 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy +cetuximab. Primary endpoints were response and skin rash (SR). We had >85% power to detect ORs=1.6 for variants with minor allele frequencies >20%. Results We identified five potential biomarkers for response and four for SR, although none remained significant after correction for multiple testing. Our initial data supported a role for Ser313Pro in PIK3R2 in modulating response to cetuximab - in patients with KRAS wild type CRCs, 36.4% of patients with one allele encoding proline responded, as compared to 71.2% of patients homozygous for alleles encoding serine (OR 0.23, 95% CI 0.09-0.56, P=0.0014) and this association was predictive for cetuximab (Pinteraction=0.017); however, independent replication failed to validate this association. No previously proposed predictive biomarkers were validated. Conclusions Our study highlights the need to validate potential pharmacogenetic biomarkers. We did not find strong evidence for common germline biomarkers of cetuximab response and toxicity

    Image-based consensus molecular subtype classification (imCMS) of colorectal cancer using deep learning

    Get PDF
    Objective Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. Design Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. Results Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. Conclusion This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows

    Pharmacogenetic analyses of 2,183 patients with advanced colorectal cancer; Potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy.

    Get PDF
    BACKGROUND: Inherited genetic variants may influence response to, and side-effects from, chemotherapy. We sought to generate a comprehensive inherited pharmacogenetic profile for oxaliplatin and 5FU/capecitabine therapy in advanced colorectal cancer (aCRC). METHODS: We analysed more than 200 potentially functional, common, inherited variants in genes within the 5FU, capecitabine, oxaliplatin and DNA repair pathways, together with four rare dihydropyrimidine dehydrogenase (DPYD) variants, in 2183 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab (from MRC COIN and COIN-B trials). Primary end-points were response, any toxicity and peripheral neuropathy. We had >85% power to detect odds ratios (ORs) = 1.3 for variants with minor allele frequencies >20%. RESULTS: Variants in DNA repair genes (Asn279Ser in EXO1 and Arg399Gln in XRCC1) were most associated with response (OR 1.9, 95% confidence interval [CI] 1.2-2.9, P = 0.004, and OR 0.7, 95% CI 0.5-0.9, P = 0.003, respectively). Common variants in DPYD (Cys29Arg and Val732Ile) were most associated with toxicity (OR 0.8, 95% CI 0.7-1.0, P = 0.008, and OR 1.6, 95% CI 1.1-2.1, P = 0.006, respectively). Two rare DPYD variants were associated with increased toxicity (Asp949Val with neutropenia, nausea and vomiting, diarrhoea and infection; IVS14+1G>A with lethargy, diarrhoea, stomatitis, hand-foot syndrome and infection; all ORs > 3). Asp317His in DCLRE1A was most associated with peripheral neuropathy (OR 1.3, 95% CI 1.1-1.6, P = 0.003). No common variant associations remained significant after Bonferroni correction. CONCLUSIONS: DNA repair genes may play a significant role in the pharmacogenetics of aCRC. Our data suggest that both common and rare DPYD variants may be associated with toxicity to fluoropyrimidine-based chemotherapy

    Thromboxane biosynthesis in cancer patients and its inhibition by aspirin: a sub-study of the Add-Aspirin trial

    Get PDF
    BACKGROUND: Pre-clinical models demonstrate that platelet activation is involved in the spread of malignancy. Ongoing clinical trials are assessing whether aspirin, which inhibits platelet activation, can prevent or delay metastases. METHODS: Urinary 11-dehydro-thromboxane B2 (U-TXM), a biomarker of in vivo platelet activation, was measured after radical cancer therapy and correlated with patient demographics, tumour type, recent treatment, and aspirin use (100 mg, 300 mg or placebo daily) using multivariable linear regression models with log-transformed values. RESULTS: In total, 716 patients (breast 260, colorectal 192, gastro-oesophageal 53, prostate 211) median age 61 years, 50% male were studied. Baseline median U-TXM were breast 782; colorectal 1060; gastro-oesophageal 1675 and prostate 826 pg/mg creatinine; higher than healthy individuals (~500 pg/mg creatinine). Higher levels were associated with raised body mass index, inflammatory markers, and in the colorectal and gastro-oesophageal participants compared to breast participants (P < 0.001) independent of other baseline characteristics. Aspirin 100 mg daily decreased U-TXM similarly across all tumour types (median reductions: 77-82%). Aspirin 300 mg daily provided no additional suppression of U-TXM compared with 100 mg. CONCLUSIONS: Persistently increased thromboxane biosynthesis was detected after radical cancer therapy, particularly in colorectal and gastro-oesophageal patients. Thromboxane biosynthesis should be explored further as a biomarker of active malignancy and may identify patients likely to benefit from aspirin

    Pathogenesis of Candida albicans Infections in the Alternative Chorio-Allantoic Membrane Chicken Embryo Model Resembles Systemic Murine Infections

    Get PDF
    Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM) and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite its limitations, it presents a useful alternative tool to pre-screen C. albicans strains to select strains for subsequent testing in murine models

    Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis

    Get PDF
    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (Cindex) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction

    Association of Cardiometabolic Multimorbidity With Mortality.

    Get PDF
    IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity

    Association of Cardiometabolic Multimorbidity With Mortality.

    Get PDF
    IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity

    Cardiovascular Risk Factors Associated With Venous Thromboembolism.

    Get PDF
    IMPORTANCE: It is uncertain to what extent established cardiovascular risk factors are associated with venous thromboembolism (VTE). OBJECTIVE: To estimate the associations of major cardiovascular risk factors with VTE, ie, deep vein thrombosis and pulmonary embolism. DESIGN, SETTING, AND PARTICIPANTS: This study included individual participant data mostly from essentially population-based cohort studies from the Emerging Risk Factors Collaboration (ERFC; 731 728 participants; 75 cohorts; years of baseline surveys, February 1960 to June 2008; latest date of follow-up, December 2015) and the UK Biobank (421 537 participants; years of baseline surveys, March 2006 to September 2010; latest date of follow-up, February 2016). Participants without cardiovascular disease at baseline were included. Data were analyzed from June 2017 to September 2018. EXPOSURES: A panel of several established cardiovascular risk factors. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) per 1-SD higher usual risk factor levels (or presence/absence). Incident fatal outcomes in ERFC (VTE, 1041; coronary heart disease [CHD], 25 131) and incident fatal/nonfatal outcomes in UK Biobank (VTE, 2321; CHD, 3385). Hazard ratios were adjusted for age, sex, smoking status, diabetes, and body mass index (BMI). RESULTS: Of the 731 728 participants from the ERFC, 403 396 (55.1%) were female, and the mean (SD) age at the time of the survey was 51.9 (9.0) years; of the 421 537 participants from the UK Biobank, 233 699 (55.4%) were female, and the mean (SD) age at the time of the survey was 56.4 (8.1) years. Risk factors for VTE included older age (ERFC: HR per decade, 2.67; 95% CI, 2.45-2.91; UK Biobank: HR, 1.81; 95% CI, 1.71-1.92), current smoking (ERFC: HR, 1.38; 95% CI, 1.20-1.58; UK Biobank: HR, 1.23; 95% CI, 1.08-1.40), and BMI (ERFC: HR per 1-SD higher BMI, 1.43; 95% CI, 1.35-1.50; UK Biobank: HR, 1.37; 95% CI, 1.32-1.41). For these factors, there were similar HRs for pulmonary embolism and deep vein thrombosis in UK Biobank (except adiposity was more strongly associated with pulmonary embolism) and similar HRs for unprovoked vs provoked VTE. Apart from adiposity, these risk factors were less strongly associated with VTE than CHD. There were inconsistent associations of VTEs with diabetes and blood pressure across ERFC and UK Biobank, and there was limited ability to study lipid and inflammation markers. CONCLUSIONS AND RELEVANCE: Older age, smoking, and adiposity were consistently associated with higher VTE risk.This research has been conducted using the UK Biobank resource under Application Number 26865. This work was supported by underpinning grants from the UK Medical Research Council (grant G0800270), the British Heart Foundation (grant SP/09/002), the British Heart Foundation Cambridge Cardiovascular Centre of Excellence, UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council (grant 268834), the European Commission Framework Programme 7 (grant HEALTH-F2-2012-279233), and Health Data Research UK. Dr Danesh holds a British Heart Foundation Personal Chair and a National Institute for Health Research Senior Investigator Award
    corecore