27 research outputs found

    Growth characteristics of American Ginseng (Panax quinquefolius L.) woods and field - cultivated at Northern Europe

    Get PDF
    Received: February 19th, 2022 ; Accepted: May 15th, 2022 ; Published: May 16th, 2022 ; Correspondence: [email protected] Latvia, Northern Europe, American ginseng was grown in three forest types with different dominant species, as well as in agricultural field conditions - cultivated under artificial shade with three different types of mulches. Field cultivation yielded higher yields, root length, and root weight than wood cultivation under dominant species Corylus avellana, Betula pendula, and Picea abies. Mulching had a positive impact on ginseng growth in the field. Mulching with straw and buckwheat hulls resulted in longer and heavier roots. In American ginseng roots, the contents of six ginsenosides were determined: Rg1, Re, Rb1, Rc, Rb2, and Rd. Re was the most abundant ginsenoside, followed by Rb1 > Rd > Rg1 = Rb2 > Rd. The total content of ginsenosides in our study did not reach the 4 percent threshold set by US Pharmacopeia. These findings show that Panax quinquefolium can be grown in Northern Europe at 57°N, but it takes more than four years to achieve adequate yields and ginsenoside content

    A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts

    Get PDF
    AimThis Red List is a summary of the conservation status of the European species of mosses, liverworts and hornworts, collectively known as bryophytes, evaluated according to IUCN’s Guidelines for Application of IUCN Red List Criteria at Regional Level. It provides the first comprehensive, region-wide assessment of bryophytes and it identifies those species that are threatened with extinction at a European level, so that appropriate policy measures and conservation actions, based on the best available evidence, can be taken to improve their status.ScopeAll bryophytes native to or naturalised in Europe (a total of 1,817 species), have been included in this Red List. In Europe, 1,796 species were assessed, with the remaining 21 species considered Not Applicable (NA). For the EU 28, 1,728 species were assessed, with a remaining 20 species considered NA and 69 species considered Not Evaluated (NE). The geographical scope is continentwide, extending from Iceland in the west to the Urals in the east, and from Franz Josef Land in the north to theCanary Islands in the south. The Caucasus region is not included. Red List assessments were made at two regional levels: for geographical Europe and for the 28 Member States of the European Union.ResultsOverall, 22.5% of European bryophyte species assessed in this study are considered threatened in Europe, with two species classified as Extinct and six assessed as Regionally Extinct (RE). A further 9.6% (173 species) are considered Near Threatened and 63.5% (1,140 species) are assessed as Least Concern. For 93 species (5.3%), there was insufficient information available to be able to evaluate their risk of extinction and thus they were classified as Data Deficient (DD). The main threats identified were natural system modifications (i.e., dam construction, increases in fire frequency/intensity, and water management/use), climate change (mainly increasing frequency of droughts and temperature extremes), agriculture (including pollution from agricultural effluents) and aquaculture.RecommendationsPolicy measures• Use the European Red List as the scientific basis to inform regional/national lists of rare and threatened species and to identify priorities for conservation action in addition to the requirements of the Habitats Directive, thereby highlighting the conservation status of bryophytes at the regional/local level.• Use the European Red List to support the integration of conservation policy with the Common Agricultural Policy (CAP) and other national and international policies. For example, CAP Strategic Plans should include biodiversity recovery commitments that could anticipate, among others, the creation of Important Bryophyte Areas. An increased involvement of national environmental agencies in the preparation of these strategic plans, and more broadly in ongoing discussions on the Future CAP Green Architecture, would likely also ensure the design of conservation measures better tailored to conserve bryophytes in agricultural landscapes.• Update the European Red List every decade to ensure that the data remains current and relevant.• Develop Key Biodiversity Areas for bryophytes in Europe with a view to ensuring adequate site-based protection for bryophytes.Research and monitoring• Use the European Red List as a basis for future targeted fieldwork on possibly extinct and understudied species.• Establish a monitoring programme for targeted species (for example, threatened species and/or arable bryophytes).• Use the European Red List to obtain funding for research into the biology and ecology of key targeted species.Action on the ground• Use the European Red List as evidence to support multi-scale conservation initiatives, including designation of protected areas, reform of agricultural practices and land management, habitat restoration and rewilding, and pollution reduction measures.• Use the European Red List as a tool to target species that would benefit the most from the widespread implementation of the solutions offered by the 1991 Nitrates Directive (Council Directive 91/676/EEC), including the application of correct amounts of nutrients for each crop, only in periods of crop growth under suitable climatic conditions and never during periods of heavy rainfall or on frozen ground, and the creation of buffer zones to protect waters from run-off from the application of fertilizers.Ex situ conservation• Undertake ex situ conservation of species of conservation concern in botanic gardens and spore and gene banks, with a view to reintroduction where appropriate.</p

    New national and regional bryophyte records, 45

    Full text link

    Spontaneous revegetation of cutaway fens: can it result in valuable habitats?

    No full text
    Studies of spontaneous revegetation in cutaway peatlands with residual fen peat are relatively scarce in Europe. However, knowledge about the spontaneous recovery of vegetation and factors affecting the succession can be applied in wetland restoration and conservation of valuable, threatened habitats and species populations. We analysed spontaneous revegetation and influencing factors in six cutaway fens in Latvia. The results suggest that the major drivers affecting the composition of vegetation in the study sites are water table, soil water pH and time since peat harvesting ceased. Water table is the major variable that distinguishes success from failure in terms of fen recovery, while pH differentiates the outcome: poor fen and rich fen vegetation, together with age, define the ‘typicalness’ of the plant community. In alkaline conditions the sites can host numerous rare and specialist species. The outcome of self-restoration is site-specific, making the results difficult to generalise
    corecore