45 research outputs found

    Effect of moisture damage on gap-graded asphalt mixture incorporating electric arc furnace steel slag and copper mine tailings

    Get PDF
    Water damage is a vital factor affecting the durability of gap-graded asphalt. There is an urgent need for a pragmatic and reasonable test to evaluate this parameter. Previous research has proposed that tensile strength ratio is a promising test for this application. Therefore, the aim of this paper is to evaluate the effect of moisture damage on gap-graded asphalt mixture incorporating electric arc furnace (EAF) steel slag and copper mine tailings (CMT). Four material mixtures of eight mix designs were investigated. Each mix was conditioned in water for 24-hour and 48-hour before testing. The study adopted retained strength index (RSI), durability index (DI) and tensile strength ratio (TSR) to describe the durability of gap-graded asphalt incorporating EAF steel slag and copper mine tailings. The results reveal that all the mixes fulfill the prescribed criteria. Also, there is a strong correlation between the retained strength index and the durability index with a strong coefficient of determination, R 2 of 0.9543. The results of the study further showed that gap-graded asphalt mixture incorporating EAF steel slag and copper mine tailings did not seem to pose any problem

    Volumetric properties and leaching effect of asphalt mixes with electric arc furnace steel slag and copper mine tailings

    Get PDF
    This study focuses on the potential of electric arc furnace (EAF) steel slag and copper mine tailings as asphalt paving materials with respect to issues of volumetric properties and leaching. In this study, four different asphalt mixes were investigated; each contained EAF steel slag and copper mine tailings of various proportions. Apart from the microstructure analysis of the materials, a toxicity characteristics leaching procedure (TCLP) test was conducted on both the mixes and the aggregates. All the mixes were evaluated by the following parameters: Voids in the mineral aggregates (VMA), voids in total mix (VTM), voids filled with asphalt (VFA), Marshall stability and flow and specific gravity. F-test ANNOVA was used to evaluate the degree of significance of the mixes with each of the evaluated standards. It was observed that the mixes containing either EAF steel slag or copper mine tailings or both gave better results than the control mix. In terms of the TCLP test, none of the detected hazardous elements exceeded the standard limits, which indicates the possibility of using them as construction materials

    Properties of asphaltic concrete containing sasobit®

    Get PDF
    With increasing interest in the use of hot mix asphalt in the paving industry, more studies in this field for improvement of hot mix asphalt properties seem to be necessary. Hence, the main objective of this study was to investigate the effect of sasobit® content as modified binder in hot mix asphalt. 60/70 penetration grade asphalt was separately modified with sasobit® at different concentrations ranging from 0% to 4.5%. The influence of sasobit® on the hot mix asphalt mixtures properties were detected through conventional tests i.e. penetration and softening point. In addition, the Marshall stability, abrasion loss, and resilient modulus were also examined. Results indicated that the hot mix asphalt containing Sasobit® additive has significant affect in terms of penetration and softening point. Furthermore, the addition of Sasobit® seemed to improve the stability, abrasion loss and modulus of stiffness

    Performance of Kaolin Clay on hot-mix asphalt properties

    Get PDF
    Kaolin clay is a waste product with numerous applications in construction. This study explored the addition effect of kaolin clay on the properties of hot-mix asphalt. Four replacement levels of kaolin clay were considered by weight of binder, i.e., 2%, 4%, 6%, and 8%. The performance of kaolin clay on the hot-mix asphalt was evaluated through a Marshall stability and flow test, including stiffness, density, voids in total mix, and voids in filled with asphalt. Test results showed that kaolin clay can be satisfactorily used as filler replacement material to increase the asphalt mixture properties. Generally, asphaltic concrete with 2% kaolin clay replacement level exhibits excellent performance with good stability and stiffness

    An overall review: Modified asphalt binder containing sasobit in warm-mix asphalt technology

    Get PDF
    Increasing emission of greenhouse gases is an environmental issue, and it is a great concern to curb this problem from further harm to the environment. Warm-mix asphalt (WMA) is one of efforts to curb a reduction in the temperature at which asphalt mixes are produced. WMA can reduce the temperature to 100°C and even lower without compromising the performance of asphalt binder. WMA has various benefits such as, reduction of asphalt binder temperature, reduction in energy consumption and less air pollution. It reduces short-term aging, compacting effort and decreases temperature drop during transportation. Sasobit is one of the organic additives of warm mix asphalt. It is used as a binder modifier to produce rut resistant mixtures. It provides the option of reducing fume emissions, saving energy and reducing production cycles. Therefore, sasobit is the preferred additive for warm-mix asphalt (WMA). In addition, Complex shear modulus will be determined to find the rutting factor and fatigue factor for the asphalt binder (G*/Sind and G*Sind respectively). The overall purposes of this study are to determine the importance of using WMA as a green pavement and introducing sasobit for modifying virgin asphalt binder

    A review of the corrosion behavior of metallic heritage structures and artifacts

    Get PDF
    Awareness about restoring and preserving historically important structures and artifacts is gradually growing in many parts of the world. These artifacts and structures represent the culture, tradition and past of a nation. They are often also a source of national income through tourist activities. Besides masonry and wood work, metallic forms and relics are a vital part of the heritage which needs to be conserved. Certain metals have been used significantly throughout history in the creation of objects and structures. However, metals are prone to decay over time, particularly decay through corrosion. The basic mechanisms of metal corrosion, the various types of corrosion and existing remedial solutions are reviewed in this paper. The most significant factor affecting metal corrosion was found to be the surrounding environment, especially in marine areas. Different remedial measures can be implemented on corroded metals according to their specific properties. Recommendations for further study are offered at the end of the paper

    Optimizing the performance of a paper mill effluent treatment

    Get PDF
    The paper making industry is characterized by high rate of water consumption and hence high rate of wastewater generation. The purpose of this research was to assess and optimize the existing complete mix activate sludge treatment plant that is used to treat the high strength paper mill effluent with the highest possible efficiency at a reasonable cost. The collected paper mill wastewater is equalized in an equalization tank before being pumped to the treatment plant. The treatment plant includes chemical treatment unit, complete mix activated sludge and granular media filtration unit. The results showed that effluent of a chemical treatment unit was found to be relatively similar to the laboratory simulated plain sedimentation unit. It can be concluded that addition of chemical coagulant can be eliminated with an overall saving of chemical addition costs. The complete mixing activated sludge achieved good removal of biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Furthermore, the results showed that the plant is operated under low BOD:P ratio. The treatment efficiency of the plant can be improved by increasing the phosphorous dose to the plant to have BOD:P ratio of 100:0.5 to 100:1. It was found that 50% of the treated effluent is recycled to the manufacturing process, however this percentage can be increased through proper plant optimization and control of nutrient addition to the activated sludge unit

    Evaluation of rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace steel slag and copper mine tailing

    No full text
    In order to promote the use of waste materials in road construction, this paper presents the laboratory results of a study investigating the rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace (EAF) steel slag and copper mine tailings. To achieve this objective, four different mixes incorporating copper mine tailings and EAF steel slag in different proportions are investigated. The aggregates are blended with the optimum bitumen content of PG(76-22) and 80/100 bitumen binders. The rutting potential of all the mixes is evaluated by the asphalt pavement analyzer (APA), while the skid resistance is measured by the British Pendulum Skid Resistance Tester. The results show that the mix with 20% copper mine tailing and 80% EAF steel slag has the highest skid number, mean texture depth and the least rut depth. It is also observed that the rate of rutting decreased with loading cycles and 70 to 80% of the rut depth is attained at 4000 cycles using the APA

    Evaluation of rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace steel slag and copper mine tailing

    No full text
    550-558In order to promote the use of waste materials in road construction, this paper presents the laboratory results of a study investigating the rutting potential and skid resistance of hot mix asphalt incorporating electric arc furnace (EAF) steel slag and copper mine tailings. To achieve this objective, four different mixes incorporating copper mine tailings and EAF steel slag in different proportions are investigated. The aggregates are blended with the optimum bitumen content of PG76-22 and 80/100 bitumen binders. The rutting potential of all the mixes is evaluated by the asphalt pavement analyzer (APA), while the skid resistance is measured by the British Pendulum Skid Resistance Tester. The results show that the mix with 20% copper mine tailing and 80% EAF steel slag has the highest skid number, mean texture depth and the least rut depth. It is also observed that the rate of rutting decreased with loading cycles and 70 to 80% of the rut depth is attained at 4000 cycles using the APA

    Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction

    No full text
    This study evaluates the suitability of using electric arc furnace (EAF) steel slag and copper mine tailings (CMT) as substitution for conventional aggregates used in pavements for roads and highways. Four mix designs containing EAF steel slag and CMT at different proportions were investigated. Mix 1 was 100% granite, Mix 2 consisted of 80% granite and 20% CMT, Mix 3 consisted of 80% EAF steel slag and 20% CMT while Mix 4 consisted of 40% granite, 40% EAF steel slag and 20% CMT. Marshall stability, moisture susceptibility, indirect tensile resilient modulus and dynamic creep tests were used to evaluate the laboratory performance of the mixtures. The findings reveal that substituting natural granite aggregates with CMT and EAF steel slag improved the performance properties of asphalt mixtures. The mixture containing 80% EAF steel slag and 20% CMT produced the best results. The resilient modulus results show that the resilient modulus of the mixes decreased as the temperature increased. Also, the aging process significantly increased the resilient modulus and dynamic creep modulus values. Thus, the study has revealed that the mining by-products (CMT) and metallurgical by-products (EAF steel slag) can be utilized as aggregates in road construction
    corecore