79 research outputs found

    Preventive role of Withania somnifera on hyperlipidemia and cardiac oxidative stress in streptozotocin induced type 2 diabetic rats

    Get PDF
    Purpose: The present study was intended to investigate the preventive role of Withania somnifera (WS) on hyperlipidemia and oxidative stress in the heart of streptozotocin (STZ)-induced type 2 diabetic rats.Methods: Single intraperitoneal injection of STZ (100 mg/kg) was given to 2 days rat pups to induce type 2 diabetes mellitus. Diabetes was confirmed 90 days after the administration of STZ by measuring blood glucose level. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the confirmation of diabetes. Glucose, lactate dehydrogenase (LDH), creatinine kinase (CK), total cholesterol (TCh), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), verylow density lipoprotein cholesterol (VLDL-C) and markers of oxidative stress parameters like lipid peroxidation (LPO), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) were evaluated in the heart of type 2 diabetic rats.Results: Oral administration of WS for 5 weeks resulted in a significant (P<0.001) reduction in glucose, LDH, CK, TC, TG, LDL-C, VLDL-C levels with significant elevation of HDL-C levels. On the other hand, WS treated diabetic rats significantly (P<0.01-P<0.001) reduced the elevated levels of LPO, increased levels of antioxidant enzymes (i.e, GSH, GPx, GR, GST, SOD and CAT).Conclusion: These findings propose the role of hyperlipidemia and cardiac oxidative stress in type 2 diabetic rats and suggested protective effect of WS in this animal model.Keywords: Withania somnifera; Hyperlipidemia; Oxidative stress; Streptozotocin; Type 2 diabete

    EFFECTS OF SOLVENT POLARITY ON SOLVATION FREE ENERGY, DIPOLE MOMENT, POLARIZABILITY, HYPERPOLARIZABILITY AND MOLECULAR REACTIVITY OF ASPIRIN

    Get PDF
    Objective: The aim of the study is to explore the effects of solvent polarity on solvation free energy, dipole moment, polarizability, first order hyperpolarizability and different molecular properties like chemical hardness and softness, chemical potential, electronegativity, electrophilicity index of aspirin which may lead to better understand the reactivity and stability of aspirin in different solvent systems.Methods: Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G(d,p) basis set was employed to conduct all type of calculations for both in the gas phase and in solution. The solvation free energy, dipole moment and molecular properties were calculated by applying the Solvation Model on Density (SMD) in four solvent systems namely water, methanol, ethanol and n-octanol.Results: The solvation energies steadily increased as the dielectric constant was decreased i.e. free energy increases with decreasing polarity of the solvent. The dipole moment of aspirin was found to be increased when going from non-polar to polar solvents. The dipole moment of aspirin was higher in different solvents than that of the gas phase. The polarizability and first order hyperpolarizability were also increased with the increasing dielectric constant of the solvent. Moreover, ongoing from non-polar to polar solvent the chemical potential, electronegativity and electrophilicity index were increased except in n-octanol. The chemical potential, electronegativity and electrophilicity index of aspirin in n-octanol was higher than that of ethanol. On the other hand, chemical hardness was increased with decreasing polarity of the solvent and the inverse relation was found in the case of softness.Conclusion: The calculated solvation free energy, dipole moment, polarizability, first order hyperpolarizability and molecular properties found in this study may lead to the understanding of stability and reactivity of aspirin in different solvent systems

    Characteristics and Source Apportionment of Black Carbon (BC) in a Suburban Area of Klang Valley, Malaysia

    Get PDF
    Black carbon (BC) is of concern due to its contribution to poor air quality and its adverse effects human health. We carried out the first real-time monitoring of BC in Malaysia using an AE33 Aethalometer. Measurements were conducted between 1 January and 31 May 2020 in a university area in a suburban location of the Klang Valley. The measurement period coincided with the implementation of a movement control order (MCO) in response to COVID-19. The mean concentration of BC before the MCO was 2.34 µg/m3 which decreased by 38% to 1.45 µg/m3 during the MCO. The BC is dominated by fossil-fuel sources (mean proportion BCff = 79%). During the MCO, the BCff concentration decreased by more than the BCbb concentration derived from biomass burning. BC and BCff show very strong diurnal cycles, which also show some weekday–weekend differences, with maxima during the night and just before noon, and minima in the afternoon. These patterns indicate strong influences on concentrations from both traffic emissions and boundary layer depth. BC was strongly correlated with NO2 (R = 0.71), another marker of traffic emission, but less strongly with PM2.5 (R = 0.52). The BC absorption Ångström exponent (AAE) ranged between 1.1 and 1.6. We observed pronounced diurnal cycles of lower AAE in daytime, corresponding to BCff contributions from traffic. Average AAE also showed a pronounced increase during the MCO. Our data provides a new reference for BC in suburban Malaysia for the public and policy-makers, and a baseline for future measurements

    Observed trends in extreme temperature over the Klan

    Get PDF
    This study investigates the recent extreme temperature trends across 19 stations in the Klang Valley, Malaysia, over the period 2006−16. Fourteen extreme index trends were analyzed using the Mann−Kendall non-parametric test, with Sen’s slope as a magnitude estimator. Generally, the annual daily mean temperature, daily mean maximum temperature, and daily mean minimum temperature in the Klang Valley increased significantly, by 0.07°C yr−1, 0.07°C yr−1 and 0.08°C yr−1 , respectively. For the warm temperature indices, the results indicated a significant upward trend for the annual maximum of maximum temperature, by 0.09°C yr−1, and the annual maximum of minimum temperature, by 0.11°C yr−1. The results for the total number of warm days and warm nights showed significant increasing trends of 5.02 d yr−1 and 6.92 d yr−1 , respectively. For the cold temperature indices, there were upward trends for the annual minimum of maximum temperature, by 0.09°C yr−1, and the annual minimum of minimum temperature, by 0.03°C yr−1, concurrent with the decreases in the total number cold days (TX10P), with −3.80 d yr−1, and cold nights (TN10P), with −4.33 d yr−1. The 34°C and 37°C summer days results showed significant upward trends of 4.10 d yr−1 and 0.25 d yr−1, respectively. Overall, these findings showed upward warming trends in the Klang Valley, with the minimum temperature rate increasing more than that of the maximum temperature, especially in urban areas

    Effects of drying methods on the characteristics of rambutan (Nephelium lappaceum L.) seed fat: an optimisation approach

    Get PDF
    The pre-treatment of oilseeds prior to extraction process may affect oil yield and quality. The aim of this study was to investigate the effects of two drying methods on rambutan seed fat (RSF) yield and their oxidative stability, physicochemical properties, and crystal morphology. Response surface methodology (RSM) was used in the optimisation and investigation of the effects of three process conditions: seed weight (g), extraction time (min), and solvent volume (ml) on RSF yield. Under optimal conditions, a maximum RSF yield of 44.14% was obtained. The differences between RSF pre-treated with oven-drying and RSF with freeze-drying methods in slip melting point (38.3◦C to 39.7◦C), free fatty acid (3.13 to 3.50 mg KOH/g fat), peroxide value (1.04 to 1.67 meq of O2/kg of fat), p-anisidine value (1.10 to 1.56), and total oxidation value (4.21 to 5.67) were significant (p < 0.05). Both fats showed needle-like shaped crystals. Our results provide usefu linformation in the pre-treatment of RSF, which has potential to be used as blending component with palm oil for cocoa butter equivalent formulation in chocolate and confectionery industries

    Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models

    Get PDF
    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009–2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC’16 increased from a minimum of 5 ppb to ~ 10–13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC’16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region. © 2017, Springer-Verlag GmbH Germany

    Functional and nutritional properties of rambutan (Nephelium lappaceum L.) seed and its industrial application: A review

    Get PDF
    Background Rambutan (Nephelium lappaceum L.) is an important commercial fruit in southeast Asia and is gaining more attention in recent years because it is juicy and sweet and has a refreshing flavour and an exotic appearance. It is commercialized for fresh consumption and is industrially processed as canned fruit, juices, jams, jellies, marmalades, and spreads. The seed is a major co-product of this industry and is worthy of attention for industrial applications and their feasibility. Scope and approach This review describes the composition of the rambutan seed, which is examined from a critical interpretation regarding the suitable use of this co-product. This review also compares the total yield, physicochemical and thermal properties of its fat for the purpose of evaluating the potential of this fruit co-product as a source of natural edible fat with potential industrial uses. Key findings and conclusions Rambutan seed is a major co-product of the industry that has high premium-grade fat, protein, carbohydrate, fibre, antioxidants, and phenolic content and that can be used in several segments of the food, pharmaceutical, and cosmetic industries. Rambutan seed powders are also used as local medicine (they contain antidiabetic compounds) in Malaysia. To determine the effectiveness of raw rambutan seeds in treating diseases, in vivo and human clinical studies should be performed. Research should also continue to determine if rambutan seed fat can be fractionated, chemical and enzymatic interesterified, and blended with other fats to make cocoa butter alternatives. Comprehensive studies are needed on rambutan seed to explore more potential industrial applications

    Functional and nutritional properties of rambutan (Nephelium lappaceum L.) seed and its industrial application: A review

    Get PDF
    Background Rambutan (Nephelium lappaceum L.) is an important commercial fruit in southeast Asia and is gaining more attention in recent years because it is juicy and sweet and has a refreshing flavour and an exotic appearance. It is commercialized for fresh consumption and is industrially processed as canned fruit, juices, jams, jellies, marmalades, and spreads. The seed is a major co-product of this industry and is worthy of attention for industrial applications and their feasibility. Scope and approach This review describes the composition of the rambutan seed, which is examined from a critical interpretation regarding the suitable use of this co-product. This review also compares the total yield, physicochemical and thermal properties of its fat for the purpose of evaluating the potential of this fruit co-product as a source of natural edible fat with potential industrial uses. Key findings and conclusions Rambutan seed is a major co-product of the industry that has high premium-grade fat, protein, carbohydrate, fibre, antioxidants, and phenolic content and that can be used in several segments of the food, pharmaceutical, and cosmetic industries. Rambutan seed powders are also used as local medicine (they contain antidiabetic compounds) in Malaysia. To determine the effectiveness of raw rambutan seeds in treating diseases, in vivo and human clinical studies should be performed. Research should also continue to determine if rambutan seed fat can be fractionated, chemical and enzymatic interesterified, and blended with other fats to make cocoa butter alternatives. Comprehensive studies are needed on rambutan seed to explore more potential industrial applications
    corecore