26 research outputs found

    Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma

    Get PDF
    The molecular genetics of inherited phaeochromocytoma have received considerable attention, but the somatic genetic and epigenetic events that characterise tumourigenesis in sporadic phaeochromocytomas are less well defined. Previously, we found considerable overlap between patterns of promoter region tumour suppressor gene (TSG) hypermethylation in two neural crest tumours, neuroblastoma and phaeochromocytoma. In order to identify candidate biomarkers and epigenetically inactivated TSGs in phaeochromocytoma and neuroblastoma, we characterised changes in gene expression in three neuroblastoma cell lines after treatment with the demethylating agent 5-azacytidine. Promoter region methylation status was then determined for 28 genes that demonstrated increased expression after demethylation. Three genes HSP47, homeobox A9 (HOXA9) and opioid binding protein (OPCML) were methylated in >10% of phaeochromocytomas (52, 17 and 12% respectively). Two of the genes, epithelial membrane protein 3 (EMP3) and HSP47, demonstrated significantly more frequent methylation in neuroblastoma than phaeochromocytoma. These findings extend epigenotype of phaeochromocytoma and identify candidate genes implicated in sporadic phaeochromocytoma tumourigenesis

    CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal cell carcinoma (RCC) is histopathologically heterogeneous with clear cell and papillary the most common subtypes. The most frequent molecular abnormality in clear cell RCC is <it>VHL </it>inactivation but promoter methylation of tumour suppressor genes is common in both subtypes of RCC. To investigate whether RCC CpG methylation status was influenced by histopathology and <it>VHL </it>status we performed high-throughput epigenetic profiling using the Illumina Goldengate Methylation Array in 62 RCC (29 RCC from von Hippel-Lindau (VHL) disease patients, 20 sporadic clear cell RCC with wild type VHL and 13 sporadic papillary RCC).</p> <p>Results</p> <p>43 genes were methylated in >20% of primary RCC (range 20–45%) and most (37/43) of these had not been reported previously to be methylated in RCC. The distribution of the number of methylated CpGs in individual tumours differed from the expected Poisson distribution (p < 0.00001; log-likelihood G test) suggesting that a subset of RCC displayed a CpG Island Methylator Phenotype. Comparison of RCC subtypes revealed that, on average, tumour specific CpG methylation was most prevalent in papillary RCC and least in VHL RCC. Many of the genes preferentially methylated in pRCC were linked to TGFβ or ERK/Akt signalling.</p> <p>Conclusion</p> <p>These findings demonstrate differing patterns of tumour-specific CpG methylation in VHL and non VHL clear cell RCC and papillary RCC, and identify multiple novel potential CpG methylation biomarkers for RCC.</p

    Anticipatory nausea in cyclical vomiting

    Get PDF
    BACKGROUND: Cyclical Vomiting Syndrome (CVS) is characterised by discrete, unexplained episodes of intense nausea and vomiting, and mainly affects children and adolescents. Comprehending Cyclical Vomiting Syndrome requires awareness of the severity of nausea experienced by patients. As a subjective symptom, nausea is easily overlooked, yet is the most distressing symptom for patients and causes many behavioural changes during attacks. CASE PRESENTATION: This first-hand account of one patient's experience of Cyclical Vomiting Syndrome shows how severe nausea contributed to the development of anticipatory nausea and vomiting (ANV), a conditioned response frequently observed in chemotherapy patients. This conditioning apparently worsened the course of the patient's disease. Anticipatory nausea and vomiting has not previously been recognised in Cyclical Vomiting Syndrome, however predictors of its occurrence in oncology patients indicate that it could complicate many cases. CONCLUSION: We suggest a model whereby untreated severe and prolonged nausea provokes anxiety about further cyclical vomiting attacks. This anxiety facilitates conditioning, thus increasing the range of triggers in a self-perpetuating manner. Effective management of the nausea-anxiety feedback loop can reduce the likelihood of anticipatory nausea and vomiting developing in other patients

    Protection from Intracellular Oxidative Stress by Cytoglobin in Normal and Cancerous Oesophageal Cells

    Get PDF
    Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model

    The UK Lung Screen (UKLS): Demographic Profile of First 88,897 Approaches Provides Recommendations for Population Screening

    Full text link
    The UK Lung Cancer Screening trial (UKLS) aims to evaluate low-dose computed tomography (LDCT) lung cancer population screening in the United Kingdom. In UKLS, a large population sample ages 50 to 75 years is approached with a questionnaire to determine lung cancer risk. Those with an estimated risk of at least 5% of developing lung cancer in the next 5 years (using the Liverpool Lung project risk model) are invited to participate in the trial. Here, we present demographic, risk, and response rate data from the first 88,897 individuals approached. Of note, 23,794 individuals (26.8% of all approached) responded positively to the initial questionnaire; 12% of these were high risk. Higher socioeconomic status correlated positively with response, but inversely with risk (P < 0.001). The 50- to 55-year age group was least likely to participate, and at lowest cancer risk. Only 5% of clinic attendees were ages ≤60 years (compared with 47% of all 88,897 approached); this has implications for cost effectiveness. Among positive responders, there were more ex-smokers than expected from population figures (40% vs. 33%), and fewer current smokers (14% vs. 17.5%). Of note, 32.7% of current smokers and 18.4% of ex-smokers were designated as high risk. Overall, 1,452 of 23,794 positive responders (6.1%) were deemed high risk and attended a recruitment clinic. UKLS is the first LDCT population screening trial, selecting high-risk subjects using a validated individual risk prediction model. Key findings: (i) better recruitment from ex- rather than current smokers, (ii) few clinic attendees ages early 50s, and (iii) representative number of socioeconomically deprived people recruited, despite lower response rates

    Impact of BSO treatment and CYGB expression upon Oxidative DNA damage.

    No full text
    <p>DNA strand-breaks (baseline and oxidative-damage-induced) were measured by the Fpg-modified comet assay in a: TE-8 and b: NE-1 cells with different levels of CYGB expression (as shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030587#pone-0030587-g001" target="_blank">Figure 1</a>). Mean of median percent comet tail intensity is shown. Error bars represent SEM. * Significantly different from each other (p<0.05). # Significantly different from each other (p<0.05).</p

    Impact of BSO treatment and CYGB expression on oxidative stress response.

    No full text
    <p>Oxidative stress was measured in a: TE-8 and b: NE1 cells. Median DCF fluorescence is the mean of 5 repeats. All values were normalised to the level seen in the control cells with no BSO. Error bars represent SEM.+2020: transfection reagent only; +CYGB: cells transfected with full length CYGB; −ve siRNA: scrambled control; CYGB k/d: CYGB siRNA. * Statistically significant concentration-dependent response (p<0.05) ** Statistically significant concentration-dependent response (p<0.01).</p

    Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer

    No full text
    Lung cancer demonstrates the highest mortality in the UK. Previous studies have implicated allelic loss at chromosome 17q in the development of non-small cell lung carcinoma (NSCLC), and a number of known and putative tumour-suppressor genes reside within this region. One candidate tumour-suppressor gene is cytoglobin (CYGB), which is contained entirely within the 42.5 kb tylosis with oesophageal cancer (TOC) minimal region. CYGB abnormalities have been demonstrated only in sporadic head and neck cancers. In this study, we investigated the expression, promoter methylation and allelic imbalance status of this gene in 52 paired (normal/tumour) surgically excised lung tissue samples from patients with NSCLC. CYGB expression in tumour tissue was significantly reduced compared with corresponding adjacent normal in 54% of the examined cases (paired t-test, P&lt;0.001). The CYGB promoter was shown by pyrosequencing to be significantly hypermethylated [2-fold increase of methylation index (MtI) in tumours] in 25/52 (48%) tumour samples compared with normal samples. MtI of the CYGB promoter was associated with CYGB mRNA expression (linear regression analysis, P=0.009), suggesting a primary role for the epigenetic events in CYGB silencing. In addition, frequent LOH was detected at the locus 17q25 in 32/48 (67%) tumours examined. It is of note that the loss of expression intensified when both LOH and hypermethylation coincided in samples (Mann-Whitney, P=0.049). These findings provide the first evidence to suggest the implication of CYGB in the pathogenesis of NSCLCs.</p
    corecore