1,067 research outputs found

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    Fast forward modeling of neutral beam injection and halo formation including full Balmer-α emission prediction at W7-X

    Get PDF
    A full collisional-radiative (CR) neutral beam injection model based on Gaussian pencil (Gausscil) beams and a diffusive CR neutral halo model are presented. The halo is a neutral cloud around the neutral beam forming due to multiple charge exchange (CX) reactions. Both models do not rely on Monte-Carlo techniques and are thereby orders of magnitude faster than commonly used models. To model the neutral halo a system of coupled diffusion equations is solved numerically, enforcing mixed boundary conditions. From the equilibrium hydrogen neutral densities in the second excited energy state (n = 3), the Balmer-α emission intensity is calculated and the full spectrum is predicted, including effects as Doppler shifts and broadening due to the complex neutral beam geometry and the motional Stark effect (MSE) from the magnetic field. All forward models are implemented in the Minerva [1] Bayesian analysis framework to enable detailed multivariant inference from Balmer-α spectroscopy data. The modeled neutral beam and halo densities are successfully verified against calculations with a validated Monte-Carlo code for the W7-X beam and plasma geometry, especially proving the validity of the halo diffusion ansatz. A comparison of the predicted emission spectra with the experimental data proves the accuracy of the implemented model. All important parameters defining the neutral beams are inferred and compared to available reference values

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Serpin Induced Antiviral Activity of Prostaglandin Synthetase-2 against HIV-1 Replication

    Get PDF
    The serine protease inhibitors (serpins) are anti-inflammatory proteins that have various functions. By screening a diverse panel of viruses, we demonstrate that the serpin antithrombin III (ATIII) has a broad-spectrum anti-viral activity for HIV-1, HCV and HSV. To investigate the mechanism of action in more detail we investigated the HIV-1 inhibition. Using gene-expression arrays we found that multiple host cell signal transduction pathways were activated by ATIII in HIV-1 infected cells but not in uninfected controls. Moreover, the signal pathways initiated by ATIII treatment, were more than 200-fold increased by the use of heparin-activated ATIII. The most up-regulated transcript in HIV-1 infected cells was prostaglandin synthetase-2 (PTGS2). Furthermore, we found that over-expression of PTGS2 reduced levels of HIV-1 replication in human PBMC. These findings suggest a central role for serpins in the host innate anti-viral response. Host factors such as PTGS2 elicited by ATIII treatment could be exploited in the development of novel anti-viral interventions
    • …
    corecore