755 research outputs found

    Stochastic heating of cooling flows

    Full text link
    It is generally accepted that the heating of gas in clusters of galaxies by active galactic nuclei (AGN) is a form of feedback. Feedback is required to ensure a long term, sustainable balance between heating and cooling. This work investigates the impact of proportional stochastic feedback on the energy balance in the intracluster medium. Using a generalised analytical model for a cluster atmosphere, it is shown that an energy equilibrium can be reached exponentially quickly. Applying the tools of stochastic calculus it is demonstrated that the result is robust with regard to the model parameters, even though they affect the amount of variability in the system.Comment: 7 pages, 6 figures, accepted by MNRAS, http://www.astro.soton.ac.uk/~gbp/pub/pavlovski_stochh.pd

    A new bound on axion-like particles

    Get PDF
    Axion-like particles (ALPs) and photons can quantum mechanically interconvert when propagating through magnetic fields, and ALP-photon conversion may induce oscillatory features in the spectra of astrophysical sources. We use deep (370 ks), short frame time Chandra observations of the bright nucleus at the centre of the radio galaxy M87 in the Virgo cluster to search for signatures of light ALPs. The absence of substantial irregularities in the X-ray power-law spectrum leads to a new upper limit on the photon-ALP coupling, gaγg_{a\gamma}: using a conservative model of the cluster magnetic field consistent with Faraday rotation measurements from M87 and M84, we find gaγ<2.6×1012g_{a \gamma} < 2.6\times10^{-12} GeV1^{-1} at 95% confidence level for ALP masses ma1013m_a \leq 10^{-13} eV. Other consistent magnetic field models lead to stronger limits of gaγ1.1g_{a \gamma} \lesssim 1.1--1.5×10121.5 \times 10^{-12} GeV1^{-1}. These bounds are all stronger than the limit inferred from the absence of a gamma-ray burst from SN1987A, and rule out a substantial fraction of the parameter space accessible to future experiments such as ALPS-II and IAXO

    The imprints of AGN feedback within a supermassive black hole's sphere of influence

    Get PDF
    We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black hole's gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with ρr1.5±0.1\rho{\propto}r^{-1.5\pm0.1}, and significantly shallower along the jet axis to the E, where ρr0.93±0.07\rho{\propto}r^{-0.93\pm0.07}. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M_{\odot}/yr. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ~100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ~80 pc and therefore lies just inside the observed transition in the hot gas structure

    Simulating Reionization: Character and Observability

    Get PDF
    In recent years there has been considerable progress in our understanding of the nature and properties of the reionization process. In particular, the numerical simulations of this epoch have made a qualitative leap forward, reaching sufficiently large scales to derive the characteristic scales of the reionization process and thus allowing for realistic observational predictions. Our group has recently performed the first such large-scale radiative transfer simulations of reionization, run on top of state-of-the-art simulations of early structure formation. This allowed us to make the first realistic observational predictions about the Epoch of Reionization based on detailed radiative transfer and structure formation simulations. We discuss the basic features of reionization derived from our simulations and some recent results on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe, July 2007, AIP Conference Serie

    Driving massive molecular gas flows in central cluster galaxies with AGN feedback

    Get PDF
    We present an analysis of new and archival ALMA observations of molecular gas in 12 central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in these systems span 109−−1011M⊙⁠, far more than most gas-rich galaxies. ALMA images reveal a distribution of morphologies from filamentary to disc-dominated structures. Circumnuclear discs on kiloparsec scales appear rare. In most systems, half to nearly all of the molecular gas lies in filamentary structures with masses of a few ×108--10M⊙ that extend radially several to several tens of kpc. In nearly all cases the molecular gas velocities lie far below stellar velocity dispersions, indicating youth, transience, or both. Filament bulk velocities lie far below the galaxy’s escape and free-fall speeds indicating they are bound and being decelerated. Most extended molecular filaments surround or lie beneath radio bubbles inflated by the central active galactic nuclei (AGNs). Smooth velocity gradients found along the filaments are consistent with gas flowing along streamlines surrounding these bubbles. Evidence suggests most of the molecular clouds formed from low entropy X-ray gas that became thermally unstable and cooled when lifted by the buoyant bubbles. Uplifted gas will stall and fall back to the galaxy in a circulating flow. The distribution in morphologies from filament to disc-dominated sources therefore implies slowly evolving molecular structures driven by the episodic activity of the AGNs

    Relationship between treatment delay and final infarct size in STEMI patients treated with abciximab and primary PCI

    Get PDF
    Background Studies on the impact of time to treatment on myocardial infarct size have yielded   conflicting results. In this study of ST-Elevation Myocardial Infarction (STEMI) treated   with primary percutaneous coronary intervention (PCI), we set out to investigate the   relationship between the time from First Medical Contact (FMC) to the demonstration   of an open infarct related artery (IRA) and final scar size. Between February 2006 and September 2007, 89 STEMI patients treated with primary PCI   were studied with contrast enhanced magnetic resonance imaging (ceMRI) 4 to 8 weeks   after the infarction. Spearman correlation was computed for health care delay time   (defined as time from FMC to PCI) and myocardial injury. Multiple linear regression   was used to determine covariates independently associated with infarct size. Results An occluded artery (Thrombolysis In Myocardial Infarction, TIMI flow 0-1 at initial   angiogram) was seen in 56 patients (63%). The median FMC-to-patent artery was 89 minutes.   There was a weak correlation between time from FMC-to-patent IRA and infarct size,   r = 0.27, p = 0.01. In multiple regression analyses, LAD as the IRA, smoking and an occluded vessel   at the first angiogram, but not delay time, correlated with infarct size. Conclusions In patients with STEMI treated with primary PCI we found a weak correlation between   health care delay time and infarct size. Other factors like anterior infarction, a   patent artery pre-PCI and effects of reperfusion injury may have had greater influence   on infarct size than time-to-treatment per se

    The Hot and Energetic Universe: AGN feedback in galaxy clusters and groups

    Get PDF
    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. The large collecting area, excellent spectral resolution and high spatial resolution of Athena+ will provide the breakthrough diagnostic ability necessary to develop this understanding, via: (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. Athena+ will therefore determine for the first time how jet energy is dissipated and distributed in group and cluster gas, and how a feedback loop operates in group/cluster cores to regulate gas cooling and AGN fuelling. Athena+ will also establish firmly the cumulative impact of powerful radio galaxies on the evolution of baryons from the epoch of group/cluster formation to the present day

    Evolution of self-organized division of labor in a response threshold model

    Get PDF
    Division of labor in social insects is determinant to their ecological success. Recent models emphasize that division of labor is an emergent property of the interactions among nestmates obeying to simple behavioral rules. However, the role of evolution in shaping these rules has been largely neglected. Here, we investigate a model that integrates the perspectives of self-organization and evolution. Our point of departure is the response threshold model, where we allow thresholds to evolve. We ask whether the thresholds will evolve to a state where division of labor emerges in a form that fits the needs of the colony. We find that division of labor can indeed evolve through the evolutionary branching of thresholds, leading to workers that differ in their tendency to take on a given task. However, the conditions under which division of labor evolves depend on the strength of selection on the two fitness components considered: amount of work performed and on worker distribution over tasks. When selection is strongest on the amount of work performed, division of labor evolves if switching tasks is costly. When selection is strongest on worker distribution, division of labor is less likely to evolve. Furthermore, we show that a biased distribution (like 3:1) of workers over tasks is not easily achievable by a threshold mechanism, even under strong selection. Contrary to expectation, multiple matings of colony foundresses impede the evolution of specialization. Overall, our model sheds light on the importance of considering the interaction between specific mechanisms and ecological requirements to better understand the evolutionary scenarios that lead to division of labor in complex systems
    corecore