1,567 research outputs found
A Path to the Direct Detection of sub-GeV Dark Matter Using Calorimetric Readout of a Superfluid He Target
A promising technology concept for sub-GeV dark matter detection is
described, in which low-temperature microcalorimeters serve as the sensors and
superfluid He serves as the target material. A superfluid helium target has
several advantageous properties, including a light nuclear mass for better
kinematic matching with light dark matter particles, copious production of
scintillation light, extremely good intrinsic radiopurity, a high impedance to
external vibration noise, and a unique mechanism for observing phonon-like
modes via liberation of He atoms into a vacuum (`quantum evaporation'). In
this concept, both scintillation photons and triplet excimers are detected
using calorimeters, including calorimeters immersed in the superfluid. Kinetic
excitations of the superfluid medium (rotons and phonons) are detected using
quantum evaporation and subsequent atomic adsorption onto a microcalorimeter
suspended in vacuum above the target helium. The energy of adsorption amplifies
the phonon/roton signal before calorimetric sensing, producing a gain mechanism
that can reduce the techonology's recoil energy threshold below the calorimeter
energy threshold. We describe signal production and signal sensing
probabilities, and estimate electron recoil discrimination. We then simulate
radioactive backgrounds from gamma rays and neutrons. Dark matter - nucleon
elastic scattering cross-section sensitivities are projected, demonstrating
that even very small (sub-kg) target masses can probe wide regions of as-yet
untested dark matter parameter space
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
A 83Krm Source for Use in Low-background Liquid Xenon Time Projection Chambers
We report the testing of a charcoal-based Kr-83m source for use in
calibrating a low background two-phase liquid xenon detector. Kr-83m atoms
produced through the decay of Rb-83 are introduced into a xenon detector by
flowing xenon gas past the Rb-83 source. 9.4 keV and 32.1 keV transitions from
decaying 83Krm nuclei are detected through liquid xenon scintillation and
ionization. The characteristics of the Kr-83m source are analyzed and shown to
be appropriate for a low background liquid xenon detector. Introduction of
Kr-83m allows for quick, periodic calibration of low background noble liquid
detectors at low energy.Comment: Updated to version submitted to JINS
Strategies to improve HIV treatment adherence in developed countries: clinical management at the individual level
Remarkable advances in the treatment of human immunodeficiency virus (HIV) disease have been blunted by widespread suboptimal adherence (ie, nonadherence), which has emerged as a major barrier to achieving the primary goal of antiretroviral (ARV) therapy: suppression of HIV viral load. Nonsuppressed HIV viral load is associated with drug resistance, increased morbidity and mortality, and a higher risk of person-to-person HIV transmission. For HIV-infected individuals who are failing HIV treatment due to nonadherence, becoming adherent is a life-saving behavior change. However, overcoming nonadherence is one of the most daunting challenges in the successful management of HIV disease. The purpose of this paper is to provide clinicians with a better understanding of nonadherence to ARV treatment and to review the various factors that have been associated with either adherence or nonadherence. Strategies are presented that may help the nonadherent individual become ready to take HIV medications as prescribed
Direct comparison of high voltage breakdown measurements in liquid argon and liquid xenon
As noble liquid time projection chambers grow in size their high voltage requirements increase, and detailed, reproducible studies of dielectric breakdown and the onset of electroluminescence are needed to inform their design. The Xenon Breakdown Apparatus (XeBrA) is a 5-liter cryogenic chamber built to characterize the DC high voltage breakdown behavior of liquid xenon and liquid argon. Electrodes with areas up to 33 cm2 were tested while varying the cathode-anode separation from 1 to 6 mm with a voltage difference up to 75 kV. A power-law relationship between breakdown field and electrode area was observed. The breakdown behavior of liquid argon and liquid xenon within the same experimental apparatus was comparable
Calibration of liquid argon and neon detectors with
We report results from tests of Kr, as a calibration
source in liquid argon and liquid neon. Kr atoms are
produced in the decay of Rb, and a clear Kr
scintillation peak at 41.5 keV appears in both liquids when filling our
detector through a piece of zeolite coated with Rb. Based on this
scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a
resolution of 6% (/E) and 3.0 photoelectrons/keV in liquid neon with a
resolution of 19% (/E). The observed peak intensity subsequently decays
with the Kr half-life after stopping the fill, and we
find evidence that the spatial location of Kr atoms in
the chamber can be resolved. Kr will be a useful
calibration source for liquid argon and neon dark matter and solar neutrino
detectors.Comment: 7 pages, 12 figure
- …