621 research outputs found

    Adaptive planning for resilient urban water systems under an uncertain future

    Full text link
    Water planners are familiar with some form of variability in climate and demand. However, the uncertainty associated with the frequency and magnitude of the variations, coupled with broader performance expectations, means that long term deterministic planning needs to give way to a new approach. The structured adaptive planning process proposed in this paper aims to meet those objectives and accommodate the uncertainty in the future by developing a portfolio of measures that are both flexible to gradual changes in trends and robust to sudden shocks. A step-by-step process of the planning framework is presented. This is followed by a case study of the inputs and results based on its implementation by the Melbourne water businesses

    Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype

    Get PDF
    Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide micro-arrays, designed specifically to detect the presence of copy number variation, it was not easy to screen an individual for the presence of unknown deletions or duplications with sizes below the level of sensitivity of optical microscopy (3–5 Mb). Now that currently available oligonucleotide micro-arrays have in excess of a million probes, the problem of copy number analysis has moved from one of data production to that of data analysis. We have developed CNViewer, to identify copy number variation that co-segregates with a disease phenotype in small nuclear families, from genome-wide oligonucleotide micro-array data. This freely available program should constitute a useful addition to the diagnostic armamentarium of clinical geneticists

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Targeted nanopore sequencing enables complete characterisation of structural deletions initially identified using exon-based short-read sequencing strategies

    Get PDF
    Background The widespread adoption of exome sequencing has greatly increased the rate of genetic diagnosis for inherited conditions. However, the detection and validation of large deletions remains challenging. While numerous bioinformatics approaches have been developed to detect deletions from whole - exome sequencing and targeted panels, further work is typically required to define the physical breakpoints or integration sites. Accurate characterisation requires either expensive follow - up whole - genome sequencing or the time - consuming, laborious process of PCR walking, both of which are challenging when dealing with the repeat sequences which frequently intersect deletion breakpoints. The aim of this study was to develop a cost-effective, long-range sequencing method to characterise deletions. Methods Genomic DNA was amplified with primers spanning the deletion using long-range PCR and the products purified. Sequencing was performed on MinION flongle flowcells. The resulting fast5 files were basecalled using Guppy, trimmed using Porechop and aligned using Minimap2. Filtering was performed using NanoFilt. Nanopore sequencing results were verified by Sanger sequencing. Results Four cases with deletions detected following comparative read-depth analysis of targeted short-read sequencing were analysed. Nanopore sequencing defined breakpoints at the molecular level in all cases including homozygous breakpoints in EYS, CNGA1 and CNGB1 and a heterozygous deletion in PRPF31. All breakpoints were verified by Sanger sequencing. Conclusions In this study, a quick, accurate and cost - effective method is described to characterise deletions identified from exome, and similar data, using nanopore sequencing

    Visual Acuity Improvement When Switching From Ranibizumab To Aflibercept Is Not Sustained

    Get PDF
    PURPOSE: To assess whether visual benefits exist in switching to aflibercept in patients who have been chronically treated with ranibizumab for neovascular age-related macular degeneration. METHODS: A multicenter, national, electronic medical record database study was performed. Patients undergoing six continuous monthly ranibizumab injections and then switched to continuous aflibercept were matched to those on continuous ranibizumab therapy. Matching was performed in a 2:1 ratio and based on visual acuity 6 months before and at the time of the switch, and the number of previous ranibizumab injections. RESULTS: Patients who were switched to aflibercept demonstrated transiently significant improvement in visual acuity that peaked at an increase of 0.9 Early Treatment Diabetic Retinopathy Study letters 3 months after the switch, whereas control patients continued on ranibizumab treatment showed a steady decline in visual acuity. Visual acuity differences between the groups were significant (P < 0.05) at 2, 3, and 5 months after the switch. Beginning at 4 months after the switch, the switch group showed a visual acuity decline similar to the control group. CONCLUSION: Transient, nonsustained improvement in visual acuity occurs when switching between anti-vascular endothelial growth factor agents, which may have implications in treating patients on chronic maintenance therapy on one anti-vascular endothelial growth factor medication

    PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5\ub4-splice-site selection causing tissue-specific defects

    Get PDF
    \ua9 The Author(s) 2024.The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A &gt; C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5’-splice site (5’SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5’SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches
    • …
    corecore