410 research outputs found

    Pulsation-triggered mass loss from AGB stars: the 60-day critical period

    Full text link
    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalogue. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately co-incides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increases at this point, by a factor of ~10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate, and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode, at a period of ~300 days.Comment: Accepted ApJ Letters, 5 pages, 2 figure

    Do the benefits of international policy commitments outweigh the burdens for small island states? : a case study of the Convention on Biological Diversity and the Federated States of Micronesia

    Get PDF
    The Federated States of Micronesia (FSM) is a small island developing state (SIDS) comprising four semi-autonomous states. The country faces a number of environmental challenges, not least of which is the loss of biodiversity upon which it relies for subsistence and economic development. The FSM is a signatory to the UN Convention on Biological Diversity (CBD) and must develop and deliver a National Biodiversity Strategy and Action Plan as a way of implementing the convention and protecting its biodiversity. For a SIDS like the FSM, being a party to the CBD presents a notable burden: fielding personnel to global meetings, crafting necessary policies and legislation and implementing such policies. This article explores the perceptions of what being a signatory to the CBD brings to those in countries such as the FSM who are responsible for, or involved in, developing and implementing biodiversity conservation policy and actions. It highlights specific perceived benefits and challenges, and considers these in relation to the status of biodiversity in the FSM today.peer-reviewe

    Playing with technology - an approach to composition

    Get PDF
    Approaches to the use of technology in music composition can be organised into two categories characteristic of the concepts of bricoleur and engineer as found in Claude Levi-Strauss' "The Savage Mind". This paper begins by arguing that the engineer approach is of more importance to the future of technology in music composition. It then documents the creation of five pieces, each intimately entwined with the use of technology and utilizing an engineer approach, outlining their associated intentions, technical implementations and concerns. Finally, the ambiguous nature of the role of composer in these pieces is outlined and discussed

    Pre-discovery transits of the exoplanets WASP-18 b and WASP-33 b from Hipparcos

    Full text link
    We recover transits of WASP-18 b and WASP-33 b from Hipparcos (1989-1993) photometry. Marginal detections of HAT-P-56 b and HAT-P-2 b may be also present in the data. New ephemerides are fitted to WASP-18 b and WASP-33 b. A tentative (~1.3 sigma) orbital decay is measured for WASP-18 b, but the implied tidal quality factor (Q' ~ 5 x 10^5) is small and survival time (<10^6 years) is too short to be likely. No orbital decay is measured for WASP-33 b, and a limit of Q' > 2 x 10^5 is placed. For both planets, the uncertainties in published ephemerides appear underestimated: the uncertainty in the period derivative of WASP-18 b would be greatly reduced if its current ephemeris could be better determined.Comment: 4 pages, 3 figures, Accepted MNRAS Letter

    Interplay between pulsation, mass loss, and third dredge-up: More about Miras with and without technetium

    Get PDF
    We follow-up on a previous finding that AGB Mira variables containing the 3DUP indicator technetium (Tc) in their atmosphere form a different sequence of K-[22] colour as a function of pulsation period than Miras without Tc. A near- to mid-infrared colour such as K-[22] is a good probe for the dust mass-loss rate of the stars. Contrary to what might be expected, Tc-poor Miras show redder K-[22] colours (i.e. higher dust mass-loss rates) than Tc-rich Miras at a given period. Here, the previous sample is extended and the analysis is expanded towards other colours and dust spectra. The most important aim is to investigate if the same two sequences can be revealed in the gas mass-loss rate. We analysed new optical spectra and expanded the sample by including more stars from the literature. Near- and mid-IR photometry and ISO dust spectra of our stars were investigated. Literature data of gas mass-loss rates of Miras and semi-regular variables were collected and analysed. Our results show that Tc-poor Miras are redder than Tc-rich Miras in a broad range of the mid-IR, suggesting that the previous finding based on the K-[22] colour is not due to a specific dust feature in the 22 micron band. We establish a linear relation between K-[22] and the gas mass-loss rate. We also find that the 13 micron feature disappears above K-[22]~2.17 mag, corresponding to \dot{M}_{\rm g}\sim2.6\times10^{-7}M_{\sun}yr^{-1}. No similar sequences of Tc-poor and Tc-rich Miras in the gas mass-loss rate vs. period diagram are found, most probably owing to limitations in the available data. Different hypotheses to explain the observation of two sequences in the P vs. K-[22] explain the observation of two sequences in the P vs. K-[22 diagram are discussed and tested, but so far none of them convincingly explains the observations. Nevertheless, we might have found an hitherto unknown but potentially important process influencing mass loss on the TP-AGB.Comment: 16 pages, 15 figures, 2 online tables, accepted for publication in A&

    The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: a cautionary case study from the northern Bushveld Complex

    Get PDF
    The application of S/Se ratios and S isotopes in the study of magmatic Ni–Cu–PGE sulfide deposits has long been used to trace the source of S and to constrain the role of crustal contamination in triggering sulfide saturation. However, both S/Se ratios and S isotopes are subject to syn- and post-magmatic processes that may alter their initial signatures. We present in situ mineral δ34S signatures and S/Se ratios combined with bulk S/Se ratios to investigate and assess their utility in constraining ore-forming processes and the source of S within magmatic sulfide deposits. Magmatic Ni–Cu–PGE sulfide mineralization in the Grasvally Norite–Pyroxenite–Anorthosite (GNPA) member, northern Bushveld Complex was used as a case study based on well-defined constraints of sulfide paragenesis and local S isotope signatures. A crustal δ34S component is evident in the most primary sulfide assemblage regardless of footwall lithology, and is inferred that the parental magma(s) of the GNPA member was crustally contaminated and sulfide saturated at the time of emplacement. However, S/Se ratios of both the primary and in particular secondary sulfide assemblages record values within or below the mantle range, rather than high crustal S/Se ratios. In addition, there is a wide range of S/Se ratio for each sulfide mineral within individual assemblages that is not necessarily consistent with the bulk ratio. The initial crustal S/Se ratio is interpreted to have been significantly modified by syn-magmatic lowering of S/Se ratio by sulfide dissolution, and post-magmatic lowering of the S/Se ratio from hydrothermal S-loss, which also increases the PGE tenor of the sulfides. Trace element signatures and variations in Th/Yb and Nb/Th ratios support both an early pre-emplacement contamination event as seen by the S isotopes and S/Se ratios, but also a second contamination event resulting from the interaction of the GNPA magma with the local footwall country rocks at the time of emplacement; though this did not add any additional S. We are able to present an integrated emplacement and contamination model for the northern limb of the Bushveld Complex. Although the multitude of processes that affect variations in the δ34S signature and in particular S/Se ratio may be problematic in interpreting ore genesis, they can reveal a wealth of additional detail on a number of processes involved in the genetic history of a Ni–Cu–PGE deposit in addition to crustal contamination. However, a prerequisite for being able to do this is to utilize other independent petrological and mineralogical techniques that provide constraints on both the timing and effect of various ore-forming and modifying processes. Utilizing both bulk and in situ methods in concert to determine the S/Se ratio allows for the assessment of multiple sulfide populations, the partitioning behaviour of Se during sulfide liquid fractionation and also the effects of low temperature fluid alteration. In comparison, S isotopes are relatively more robust and represent a more reliable indicator of the role of crustal S contamination. The addition of trace element data to the above makes for an incredibly powerful approach in assessing the role of crustal contamination in magmatic sulfide systems
    • …
    corecore