
Playing with Technology - an
approach to composition

Iain McDonald

Submitted in partial fulfilment of the requirements
of the degree of Masters in Music (Music Technology)

26/10/07

Faculty of Arts
University of Glasgow

c©Iain McDonald 31/10/07

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Glasgow Theses Service

https://core.ac.uk/display/371032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Approaches to the use of technology in music composition can be organised
into two categories characteristic of the concepts of bricoleur and engineer
as found in Claude Levi-Strauss’ ‘The Savage Mind’. This paper begins
by arguing that the engineer approach is of more importance to the future
of technology in music composition. It then documents the creation of five
pieces, each intimately entwined with the use of technology and utilizing
an engineer approach, outlining their associated intentions, technical im-
plementations and concerns. Finally the ambiguous nature of the role of
composer in these pieces is outlined and discussed.

Note

More details about the pieces discussed within this thesis are included on
the accompanying disc in the form of a site capable of running on most plat-
forms. This site contains video, audio, images and software documenting
various aspects of the creation and final state of these pieces. Either Firefox
or Safari applications are recommended for browsing the site.

1

Contents

1 Introduction 4

2 Background 6

3 Pieces and Implementation 8
3.1 Programming/Scripting Languages 8
3.2 Live Break Core . 9

3.2.1 Intention . 9
3.2.2 Overview . 9
3.2.3 Technical Implementation 9
3.2.4 Concerns . 13

3.3 Podcasts . 16
3.3.1 Terminology . 16
3.3.2 Intention . 16
3.3.3 Overview . 17
3.3.4 Technical Implementation 17
3.3.5 Concerns . 19

3.4 Data . 20
3.4.1 Intention . 20
3.4.2 Overview . 20
3.4.3 Technical Implementation 20

3.5 Cushions . 21
3.5.1 Intention . 21
3.5.2 Overview . 21
3.5.3 Technical Implementation 21
3.5.4 Concerns . 26

3.6 Fruit . 28
3.6.1 Intention . 28
3.6.2 Overview . 28

2

3.6.3 Technical Implementation 28

4 Conclusion 30

3

Chapter 1

Introduction

Over the last 50 years the deployment of computers and other electronic devices has
become increasingly prevalent in both music composition and production. Soft-
ware typesetting environments such as finale have replaced the physical act of
scoring music, allowing the composer access to tools which not only increase ef-
ficiency but add convenient editing functions; Digital Audio Workstations (DAW)
have made editing and seamless re-sequencing of recorded audio available to a
large cross-section of the population; and a range of other devices and software
packages, too long to list, have afforded similar conveniences concerning musical
creation.

Although these tools offer the aforementioned advantages within the creation of
music they do so with respect to traditional western compositional paradigms[5],
essentially increasing efficiency within this practice[3]. However, in doing this
they obscure other advantages of using technology within composition, namely the
ability to consider a more generalized approach to composition [22] [14].

One way to avoid this is to take an approach to the use of technology in compo-
sition wherein the composer is not only responsible for the creation of music but
also, to some extent, the creation of the systems and tools used to realise this mu-
sic. This type of approach can be seen in works such as Trevor Wishart’s Vox-5 and
Jean-Claude Risset’s Duet for One Pianist among others. In taking this approach
the composer can develop a much more intimate relationship with the technology
and therefore take advantage of its ability to aid the exploration of previously inac-
cessible compositional areas[27].

This report concerns five pieces, each intimately entwined with the use of tech-
nology, which were created over the last year by taking this kind of approach.
Primarily the importance of this approach is outlined in chapter two followed by a

4

review of the intention, implementation and concerns regarding each of the pieces
in chapter three. Finally the main issue raised with regards to the creation of these
pieces is discussed in chapter four.

5

Chapter 2

Background

Approaches to the use of technology in music composition can be organised into
two broad categories characteristic of the concepts of bricoleur and engineer as
found in Claude Levi-Strauss’ ‘The Savage Mind’[13]. These concepts describe
two modes of human creation based on differences in attitude towards materials,
tools and processes. The term bricoleur is used to refer to one who uses whatever
materials and tools are at hand to accomplish projects. In contrast the engineer’s
projects are not limited by a finite collection of cultural artifacts. Instead the engi-
neer is able to construct new materials and tools to realise his specific projects.

When considering these modes within the context of technology use in composi-
tion the bricoleur can be thought of as an avid user of tools for the creation of
audio (i.e. software packages and black boxes that are immediately functional) to
assist in the accomplishment of his goal. The engineer, on the other hand, prefers
to use tools for the creation of tools (i.e. programming languages) to achieve his
goal. It is important to state at this point that Levi-Strauss went to great pains to
emphasize that, while these represent radically different forms of thinking, there is
no superiority of one over the other[13]. However, we will now go on to discuss
why the approach of the engineer is far more important to the future of technology
within music than that of the bricoleur.

The problem with the bricoleur approach is not specifically the mode of thinking,
but rather that the tools ‘at hand’ for use are, in a majority of cases, recreations
of existing tools. The discipline of ‘User Centered Interface Design’ states that in
order to create a well-designed tool we must first fully understand the task it aims
to accomplish [19]. As our exploration of the uses of technology in composition
is subject to continuous fluctuation, due to advances in technology, this could ex-
plain why many compositional tools have continued to model themselves on our

6

traditional composition paradigm[5]. However, this could equally be attributed to
the commercial nature of much software and their drive to accomplish “wide sales
within a small marketplace”[18]. Irrespective of the cause, adopting this approach
simply serves to produce tools that increase efficiency with regards to this type of
practice[3] rather than facilitating the exploration of the new compositional land-
scape technology affords us.

Conversely the engineer approach allows us this freedom of exploration. Instead of
relying on the existence of tools which harbour their own intentions, specific tools
can be constructed by the composer with specific tasks in mind. The tools used
by the bricoleur make use of ‘interfaces’ which are, by definition, an attempt to
bridge the gulf between system and user therefore freeing the user from thinking in
terms of the system [19]. The engineer approach allows for a much more intimate
relationship wherein the user can come to understand the system as it is. This is
important as the main advantage of working with technology is that it can open up
our approach to composition by forcing us to consider a more generalised thought
process[14].

In approaching technology in this way the composer is no longer tied to traditional
compositional rules. Instead, he is free to create specific models for composition
that can, theoretically, be based on anything from which data can be extracted.
In this way movements on a skateboard1, bridge vibrations2 or the movement of
cushions can all be considered as candidates for the basis of a compositional model.
This approach also presents the means to explore ways in which these models can
be interacted and intervened with.

The following section provides explanations and implementations concerning five
pieces which were composed with an engineer approach to the use of technology.
It was felt that it was not enough to simply supply the finished ‘piece’ as one would
with notated music, rather, the whole model created requires explanation. As each
piece essentially constitutes a different model of composition, relying heavily on
the technology used, the implementation section was made as detailed as possible.

1Simon Morris’ Musique Concrete
2Bill Fontana’s Harmonic Bridge

7

Chapter 3

Pieces and Implementation

3.1 Programming/Scripting Languages

In the creation of these pieces the following were used:

• Pure Data
Pure Data (PD) is a real-time graphical programming environment (similar
to MAX/MSP) for audio, video and graphical processing video originally
developed by Miller Puckette and others at Institut de Recherche et Coordi-
nation Acoustique/Musique (IRCAM)1. PD has since become open source
and now has a large developer base working on new extensions to the pro-
gram.

• Objective-C
Objective-C is an object-oriented programming language used primarily in
Mac OS X and GNUstep. Within this research it was used inside Cocoa2: an
object-oriented application environment designed specifically for developing
Mac OS X-only native applications.

• AppleScript
AppleScript3 is a scripting language devised by Apple Inc. that allows users
to create automated workflows that perform repetitive multi-step tasks on
their behalf.

1http://www.ircam.fr/ [accessed: 16th Oct. 2007]
2http://developer.apple.com/cocoa/ [accessed: 16th Oct. 2007]
3http://www.apple.com/applescript/resources/ [accessed: 16th Oct. 2007]

8

3.2 Live Break Core

3.2.1 Intention

This system was designed to allow a playful approach to the creation of ‘break-
core’4 within a live context. Due to the nature of this music most attempts at live
performance result in playing preconceived tracks back to back whilst applying
effects in real-time. While this works it tends to produce a stagnant environment
within which both the artist and audience feel somewhat uneasy. This is usually
attributed to the limited level of instant control the artist has over events on both a
micro and macro scale.

This system is partially based on my approach to the composition of this type of
music and endeavors to provide the user with control at the expense of effects5. In-
stead of focusing on ways in which the user could further ‘spice up’ preconceived
tracks it gives them an environment in which music of this nature can be con-
structed ‘on-the-fly’ as it was thought that this would provide a more stimulating
experience for both parties involved. It is important to note that it is not designed
as a studio tool and that its development is iterative and in some ways still ongoing.

3.2.2 Overview

The system provides four tracks, each capable of holding and manipulating a sin-
gle audio file which can be loaded into the track at any time. Once loaded, the
audio file is indexed; a process which creates a list of rhythmically meaningful
points within the audio file using analysis algorithms. The audio file can then be
played as whole or reconstructed in a different order. Several playback attributes
can be manipulated in realtime as well as buffer and time-stretching facilities. Fur-
thermore, three standard effects are provided to allow simple shaping of the audio
streams.

3.2.3 Technical Implementation

The PD framework consists of four main elements: Loading; Playback; Effects;
Control. These will be outlined in the following sections.

4A genre of music typified by it’s use of high BPM’s, dense percussive rhythms and samples from
both popular music and ‘classic’ jungle/rave/drum and bass.

5Similar systems have been built by other artists within this field such as ‘Tim Exile’ and ‘Hard-
off’.

9

Loading

The loading element of the framework allows the user to choose an audio file, either
Audio Interchange File Format (aiff) or Waveform Audio Format (wav), from the
hard-disk which is then stored in an array. It was found that when loading audio
files, changes to certain parameters were required before playback would operate
in the manner desired. As this was a time consuming process an algorithm was
designed to set these parameters automatically using a numerical code (e.g. 2-1-4-
8-1) allowing the user to focus fully on more important tasks. This code prefaces
the file names of all audio files intended for use within the framework however,
non-coded files can still be loaded without the use of this feature.

Once the audio file is loaded into an array it is indexed; a procedure that creates
a list of rhythmically important index points within the audio file. There are two
types of indexing offered, each tailored to a specific type of audio file. The first
type of indexing caters for audio files which consist of a list of sounds separated
by silence. This approach indexes each sound by monitoring the amplitude of the
audio file as it is played. If the amplitude remains at 0 for >= 50 milliseconds the
algorithm becomes primed and as soon as the amplitude becomes ! = 0 the timed
occurrence of this event is recorded as a new index point within the index list.

The second type of indexing caters for audio files which consist of continuous
audio and essentially combines two different indexing approaches within the same
algorithm. The first divides the length of the audio file by the number of beats it
represents. This gives the length of one beat which is then used in an algorithm
,shown in Figure 3.1, to create the list of index points.

indexPoint = 0
for(i = 0; i<=numberOfBeatsInBar; i++)
{
indexArray[i] = indexPoint;
indexPoint = indexPoint + x;
}

Figure 3.1: Index point algorithm.

The second approach analyses the sample using the PD ‘bonk˜’ object. This object
looks for rapid changes in the spectral envelope as these are much more reliable
indicators of percussive attacks than changes in the overall power[20]. Low and
high threshold parameters allow the user to specify the sensitivity of the object
and therefore what constitutes a ‘substantial attack’. The timed occurrence of each

10

attack is recorded as a new index point within the index list.

Playback

There are two options concerning the playback of samples. Samples can be:

• played back based on trigger information received from a user controlled
control surface

• played back following a user defined rhythm and accompanying algorithm

The first of these options uses trigger information received from a MIDI-controller
(in this case the Korg padKontrol6). The user can choose whether or not trigger
information is quantized and gated as well as which index points each pad will
trigger (currently each pad can trigger two different samples based on the velocity
at which it is struck). The second option requires a more in depth explanation.

Each track has it’s own 2 by 52 grid, as seen in Figure 3.2, which can be used to

Figure 3.2: The grid for programming basic rhythms.

program basic rhythms. The lines in the grid can be assigned different index points
using controls situated underneath the grid7. The columns represent a metered
timeline which is stepped through at a speed designated by tempo, time-signature
and track resolution. Figure 3.3 shows a standard four beat pattern entered into the
grid where the first line is set to trigger a bass drum and the second line, a snare
drum.

To complement the programmed pattern an algorithm was designed that, on find-
ing no event programmed (i.e no cross on either line), would choose an unused

6http://www.korg.com/gear/info.asp?a prod no=KPC1&category id=8 [accessed: 16th Oct.
2007]

7A possible configuration would be to assign an index point indicating a bass drum to one line,
and an index point indicating a snare drum to the other.

11

Figure 3.3: A simple four beat pattern represented within the grid.

index point and play it. Conversely, if both boxes are ticked the algorithm will play
nothing.

It was found that as the pattern repeated it could become musically stale. In an at-
tempt to combat this a user-controlled probability function was added allowing the
user to specify how well the computer follows the defined pattern i.e. the percent-
age probability that it will play what is written. Finally a hi-hat feature allows a
single index point from the audio file to be chosen and played based on probability
values. There is a separate probability value for four consecutive beats which are
looped through at the given tempo and time-resolution.

The combination of these elements provides a quick and easy way to produce pat-
terns that have a strong rhythmic structure but also exhibit subtle changes that keep
them interesting. In addition trigger information from the padKontrol can be used
to either specify immediate location within the track’s timeline and, if struck with
sufficient force, cause an accent or change the playback pitch.

The timing of playback is ultimately managed by a sole metronome which feeds
individual metronomes located within each track. This allows a global tempo to
be specified, providing continuity between tracks, as well as individual resolutions
for each track’s timeline. This is particularly important given the temporal limits
of the timelines.

Effects

In addition to playback parameters, such as ‘pitch’ and ‘length’, buffer and time-
stretch effects are also supplied. When triggered a tempo-related slice of the audio
stream is captured and loops until the user chooses to return to normal playback.
The size of the audio captured (buffer) is chosen by the user, however, once cap-
tured the size of the buffer and speed at which the buffer is played can be varied
as well as reversed. The time-stretch function is a simple algorithm that plays a

12

specifically sized sample of the audio file whilst incrementing its starting position.
The user can alter both the size of the loop and the value at which the start point
increments. Alongside these, delay, filter and distortion effects were provided for
rudimentary shaping of the audio.

Control

The control aspect of the framework was particularly important to allow effective
and efficient manipulation of important parameters. Currently three different sets
of controls are used to allow easy access to all parameters. Keys on the laptop
keyboard are used to trigger events which have an on/off state in a ‘push-to-make’
8 manner. In addition an array of 16 knobs on an Evolution X-Session MIDI-
controller are used to control parameters which have a numerical state. Each line of
the controller (8 knobs) and line of keys on the laptop keyboard can be assigned to
any grouping of tracks. Alongside these control mechanisms a padKontrol MIDI-
controller was used to allow the triggering of user definable index points of the
loaded samples as well as control of timeline position and playback pitch.

3.2.4 Concerns

Within a system such as this both control and ease-of-use are important factors for
consideration. The user must be able to express themselves sufficiently through the
system however, in granting a high level of control the system should not become
impossible to use. This is especially pertinent within the field of live electronics as
the standard live environment presents several distractions and less room for error
than the studio environment. Although the system, in its current state, offers a level
of control which is deemed to be adequate the ease-of-use of the system is still felt
to be lacking. One way in which this could be remedied is through the improve-
ment of the interaction model used by the system with regards to either the control
mapping strategies; devices used to enable interaction or both.

Mapping strategies refers to the manner in which physical interaction is mapped
to system parameters - a process which can draw on three basic types; one-to-one,
one-to-many (divergent) and many-to-one (convergent)[23]. In addition these basic
strategies can be combined to create a complex mapping strategy termed many-to-
many[8]. Currently all parameters accessible to the user are mapped to physical
gestures using a manner which draws on both one-to-one and, at times, one-to-
many mapping strategies. These types of strategy are generally used as they are
simple to apply to a system[10]. However, through more prominent use of many-

8The key must be held down to be on

13

to-many strategies one can create an interaction system which allows the same, if
not a higher, level of expression and engagement whilst lowering the cognitive load
for the user[7] [16] [9] (an example of the implementation of this type of mapping
can seen within the FMOL[10], T-Stick[15] and Sound Sculpting[16] systems).

Another method through which the operation of the system could be eased lies in
the selection of different interfaces. At the moment the system utilises several inter-
faces9 which each promote their own method of interaction; array of pads10; array
of knobs11; keyboard as trigger array; keyboard as numerical interface; track-pad;
and screen for visual feedback. Whilst the interaction methods of each of these
interfaces suit the parameters they are mapped to, the overall effect can at times be
overwhelming. This could be solved through the use of a single interface which
could either be used in a multi-functional manner or would lend itself to a many-
to-many mapping strategy. Ideally this interface would also supply visual feedback
thus allowing the user to concentrate on a single interface for the duration of the
performance. This could also further enforce the theatrics of live performance
within the system by clearly illustrating that the performer is “necessary and is
in fact controlling the music”[4]. Interfaces which would be suited to this type
of application include the lemur12, monome13, and the more recently developed
tenori-on14.

There are also technical concerns which arose from the design and creation of this
system, most important of which was the limitations of PD’s base architecture con-
cerning threaded computing. The use of threads within a program allows several
tasks to be carried out in a pseudo-simultaneous fashion. This is achieved through
switching between threads (each undertaking a different task) several times a sec-
ond. Without this type of support the program can only carry out one task at a
time which must be seen to its end before another can begin. Even though PD now
makes use of threads many of the objects written for the program have not been
updated to take advantage of this resource.

The common ‘soundfiler˜’ object used for loading audio files into an array within
PD is one such object which does not take advantage of the multithreading abilities
of recent PD releases. Unfortunately this means that when loading an audio-file
using this object all other processing, including audio playback, must stop until
loading has been completed. Thus every-time one wishes to load an audio-file a

9See 3.2.3 ‘control’
10Korg padKontrol
11Evolution X-session Controller
12http://www.jazzmutant.com/lemur overview.php [accessed: 16th Oct. 2007]
13http://monome.org/ [accessed: 16th Oct. 2007]
14http://www.tenori-on.co.uk/ [accessed: 16th Oct. 2007]

14

silence within playback must be endured. This type of behaivour is unacceptable
within a live context.

In an attempt to combat this problem an experimental object named ‘sndfiler˜’15,
written by Tim Blechmann and Georg Holzmann, was compiled. This object pro-
vides the same functions as the previously discussed ‘soundfiler˜’ object with the
additional ability to make use of the threading functionality now embedded within
PD. Whilst this allows the user to load audio-files without experiencing drop-outs
in other processing, most importantly audio playback, the experimental nature of
both the object and the use of threads within PD means that the overall system can
become unstable at points. While this is not an optimum situation it is preferable
to the previously mentioned problems regarding the use of the soundfiler˜ object.

15http://grh.mur.at/software/sndfiler.html [accessed: 16th Oct. 2007]

15

3.3 Podcasts

3.3.1 Terminology

This piece makes use of Podcasts as a constantly replenishing supply of source
material. A podcast is a feed published by an author in RSS 2.0 format, although
ATOM 1.0 can also be used, which contains a list of enclosures that provide access
to items or episodes of that podcast alongside other complementary data. Pod-
cast consumers use a type of software known as an aggregator, such as iTunes, to
subscribe and manage their feeds. Once a podcast is subscribed to the aggrega-
tor regularly checks the feed for new content which, if found, is then downloaded
automatically.

3.3.2 Intention

In many ways, podcasting can be thought of as a new type of broadcasting, how-
ever, there are key differences between it and radio. Although both podcasting and
radio deliver content to the listener, radio is limited in that the listener must be
in both the right time and space if they wish to listen to specific content. Due to
both the medium in which podcast episodes are presented (audio file) and deliv-
ered (through the internet) the listener is no longer limited by these scheduling and
location factors.

In addition, the relative ease with which one can produce a podcast16 means that
the divide between those who listen and those who create found within radio is
almost completely eradicated. In this way podcasting can be seen as realisation
of radio experimenter Tetsuo Kogawa’s suggestion that there should be “the same
number of transmitters as receivers”[11]. This not only leads to a medium which
encompasses a rich tapestry of thought but also sonic material.

This piece uses the spatial and temporal freedom present within the podcast medium
to create an installation which juxtaposes podcast episodes and their related quali-
ties.

There are of course, similarities present between this piece and John Cage’s Imag-
inary Landscapes No.4 in the use of broadcast technology. However, while Cage
used the indeterminate nature of broadcast radio as the sound source he presented
his piece within the confines of a fixed score, thus giving it a rigid structure[6]. In

16If one has access to the tools required to listen to podcast content they have the tools to create
podcast content

16

contrast this piece is essentially an interactive installation17 wherein the structure
is fluid; created by those creating podcast material.

3.3.3 Overview

Podcast episodes are used as both source and control to create a theoretically infi-
nite audio stream. Four podcast episodes chosen from a list of available episodes
are loaded, played and analysed within PD. Attacks found within each episode are
used as triggers for both selection of source audio from the episodes and control
regarding playback options. The framework for the piece uses both iTunes and PD.
Communication between the two applications was achieved using text files and a
recursive AppleScript.

3.3.4 Technical Implementation

The framework consists of three main elements: Podcast subscription; Application
Communication and Podcast Maintenance; PD Framework. These will be outlined
in the following sections.

Podcast Subscription

iTunes was used as an aggregator to facilitate subscription to podcasts and, provid-
ing the installation is connected to the internet, subsequent automatic downloading
of episodes as they become available.

Application Communication and Podcast Maintenance

Communication between applications and the maintenance of podcasts are taken
care of by a recursive AppleScript and two text files. One text file contains the
filenames of all podcast episodes that the PD framework can potentially access.
The other contains the filenames of all podcasts that have already been accessed by
the PD framework. Each time the AppleScript runs (every 15 minutes) it completes
the following tasks in order;

1. Delete used Podcasts
matches filenames found in the second text file with podcast episode file-
names on the hard disk. This prevents the hard disk from becoming full.

17Albeit one in which interactivity is the same as the sound source and is thus subject to the same
temporal and spatial flexibility present within the medium of podcasting

17

2. Prepare new podcast episodes
deletes metadata, such as artwork, from episodes that have been downloaded
using iTunes. The object responsible for reading mp3’s within PD had trou-
ble reading mp3’s containing metadata.

3. Document available podcasts
Writes a new text file containing all the names of podcasts available for use
in the PD patch.

PD Framework

The desired output of the installation was a theoretically infinite audio stream that
represented the podcast episodes playing at any given time. The best way to achieve
this was to use the podcast episodes as both audio and control source. To these ends
an algorithm was created, using the ’bonk˜’ object in PD, which would analyze the
audio stream in real-time looking for ‘substantial attacks’18 (here referred to as
rhythmic events). Any rhythmic event found by the analysis algorithm triggers the
recording of the audio stream into a buffer for playback. Their occurrence in one
podcast also trigger the playback of another channel’s buffer. Therefore one audio
stream’s rhythm is superimposed on material sourced from another audio stream.
Furthermore, rhythmic events cause the channel to take a snapshot of the current
audio amplitude.

Certain aspects of playback are affected by the synchronicity and order of rhythmic
events across audio streams. Here synchronicity refers to the possibility that sep-
arate audio streams may have rhythmic events that occur within a set time of each
other (true synchronicity was deemed too improbable to be of use). Order refers to
the sequence in which the audio streams involved in a synchronous event created
rhythmic events e.g. all four audio streams had a rhythmic event within a set time
in the order 2, 1, 4, 3.

This is measured at two levels, the first of which analyses the occurrence of rhyth-
mic events across two audio streams in a specific order i.e audio stream one has
a rhythmic event followed by a rhythmic event in audio stream four. The trigger
information received from this analysis is used to control individual channel pa-
rameters such as overall speed of buffer playback; playback vibrato and the grad-
ual slowing of buffer playback. The channel affected is the channel whose audio
stream has its rhythmic event first; in the aforementioned example channel one
would be affected.

18See 3.2.3 ‘loading’

18

The second level analyses synchronicity across all four audio streams using a simi-
lar algorithm. If ‘synchronicity’ occurs across all audio streams the algorithm out-
puts the numbers of the audio streams that were first and second. These numbers
correlate to a specific way in which overall playback is affected; the first decides
what aspect of playback will be affected and the second decides in what way.

Many of the parameters controlled by the ‘synchronicity’ of rhythmic events also
make use of the snapshot data mentioned earlier. In these cases snapshot data either
provides a value or informs a choice regarding a playback parameter.

3.3.5 Concerns

The main technical issue relates to the amount of source material required and the
possible limitations of the medium through which it is acquired. Due to the con-
current playback of four podcast episodes within the system each minute created
is done so from four minutes of source material. Thus the system requires approx-
imately ninety-six hours of source material to run for twenty-four hours.

If the system was set-up with the intention of running for an extended period of
time it would need to download the aforementioned ninety-six hours of source ma-
terial each day, roughly equating to 5, 317.2MB19. Therefore, to run successfully
the system relies not only on access to an internet connection capable of transfer-
ring data at approximately 492 kilobits-per-second(kb/s)20 but also that a signifi-
cant amount of podcast content is uploaded per day. These issues are raised here as
they represent the most vulnerable part of the system, however, it is felt that, given
a suitable internet connection, the system should run without fault.

19This is an approximation based on ninety-six hours of audio encoded using ‘MPEG-1 Audio
layer 3’ (MP3) compression at 128kbps

20Average broadband operates at 512 kilobits-per-second

19

3.4 Data

3.4.1 Intention

Thanks to the ever decreasing cost of computers much music is now created with
the use of commercial music software that essentially transforms the computer into
a multitrack recorder, sequencer or synthesiser. However, many using this soft-
ware are doing so through illegal means, specifically through the use of ‘cracks’
available on the internet. Essentially these cracks subvert the built in security of
commercial music software thus allowing access to it without buying it.

This piece explores examples of cracked commercial music software, made to aid
synthesis, sequencing and recording of sound, in their most elemental form: data.
At this level the software becomes amorphous due to the commonality of the lan-
guage; a string of 1’s and 0’s is open to interpretation through the lens of any file
type. It is this amorphous property of digital data that is utilised within this piece
to transform music software from tool for the creation and organisation of sound
to sound itself.

3.4.2 Overview

A technique referred to as ’data bending’ was used to create the source material.
Data bending involves reading one file type as another e.g. a Rich-Text Format
(.rtf) file as a Joint Photographic Experts Group (.jpeg) compressed image file. In
the case of these pieces non-audio files were sourced from illegally downloaded
audio software that had had its security features breached. These non-audio files
were subsequently read as audio files and then sequenced using a combination of
Audacity, an open source audio sequencing program, and PD.

3.4.3 Technical Implementation

Although much of the work for this piece was done manually the limitations of Au-
dacity meant that algorithms were designed within PD to allow easier sequencing
of audio events as well as generation of content. For the most part these algorithms
utilised a combination of pattern sequencing and probabilities.

20

3.5 Cushions

3.5.1 Intention

An advantage of computer use within audio lies in the ability to create sound with-
out the constraints inherent in working within the physical realm[22]. With its use
we can build sound-models, e.g. physical models for sound synthesis, based on
any object; even ones that are, in reality, impossible due to their technological or
physical make-up[28]. In addition, unlike physical sound generators such as musi-
cal instruments, once the model is specified we still retain the freedom to change
the character of its behaviour.

However, while this increases our sonic palette exponentially the lack of physi-
cal presence within these sound-models presents a separate problem. In creating a
sound-model within a virtual space we are cutting ourselves off from experiencing
a physical relationship with the object and therefore limiting our interaction with
the model. While this can be resolved through the use of interfaces the differences
between sound-model and interface can give rise to physical-to-virtual mappings
that are alien to the user.

This piece aims to create a simple ‘sounding-object’ which exists within both the
physical and virtual realm simultaneously. This will be achieved through the use
of a base model as the foundation for both the physical model and sound-model,
representing the physical and virtual realms respectively. It is hoped that through
this process the user will identify one object that produces sound when acted upon
rather than an interface which relays data to a sound-model. On completion these
‘sounding-objects’ will become the focus of an installation.

3.5.2 Overview

Accelerometers connected to a bluetooth chip were positioned inside three equilat-
eral triangle pyramid shaped cushions. Movements or forces exerted on the cush-
ions were measured by the accelerometers and the resulting data was passed using
bluetooth technology, via an application, to a PD patch. The PD patch’s analysis
of this data was then used to manipulate a physical-model based on the cushion
and control other parameters of the sound-model which in turn formed the basis
for real-time audio synthesis.

3.5.3 Technical Implementation

The framework consists of four main elements; Model; Data Acquisition; Data
Analysis; Audio Synthesis; which will be outlined in the following sections.

21

Model

The base model, which both the physical and sound model use as a foundation, was
an equilateral triangle pyramid as seen in Figure 3.4. This was chosen as it was

x

y

z

Figure 3.4: Base model used as foundation for both physical and sound models.

deemed a simple, aesthetically pleasing shape which would, due to its symmetrical
nature, defy consistent orientation. This was important as orientation was seen as
a potential state which could be monitored and used to indicate specific changes
within the sound-model.

While the chosen model designated the overall shape of the physical model the
means and material used to construct it were still in question. As the final aim was
to produce‘sonic-objects’ which people would feel comfortable interacting with
the physical model was realised as a cushion. It was felt that this design would not
only encourage interaction but would allow users to be as physical with the object
as they wished without having to worry about potential damage to the surroundings
or the electronics inside the cushion.

Information regarding the implementation of the sound-model can be found in the
‘Audio Synthesis’ section.

Data Aquisition

When initially looking into accelerometers and bluetooth chips the costs were
deemed to be too high considering the budget available. However, this changed
with the release of the Nintendo Wii games console which used controllers (Wi-
imotes) that allowed the user’s motion to be tracked and interpreted by the con-

22

sole. This was achieved through the utilisation of three accelerometers, allowing
measurement over three axis’ as shown in Figure 3.5, and an IR sensor which all
relayed data to the console via a bluetooth chip. However, consumer electronics
meant these controllers were available at a much lower cost.

Figure 3.5: Three axis’ measured by accelerometers in Wiimote.

Whilst the Wiimote embodied the technology required at a much lower price it also
created a new problem. The controller was never intended for use with a computer,
only a Wii games console, and as such used a proprietary handshake to pair with
the console. This meant that whilst bluetooth enabled computers could see the con-
troller they could not create a stable connection allowing them to receive data from
it.

Fortunately there was much impetus within the development community to access
the function of the controller with regards to use with a computer and subsequently
development packages and drivers were released by individuals providing the basic
framework to achieve this.

One such framework available for Mac, WiiRemote.framework21 released by Hi-
roaki, was used in the creation of a small application named ‘WiiToTCP’ which
allowed the computer to create connections to three separate controllers, receive

21http://sourceforge.net/projects/darwiin-remote/ [accessed: 16th Oct. 2007]

23

data from them and then send this data via Transmission Control Protocol (TCP)22

to ports23 which the PD patch was listening on.

Data Analysis

Before setting up algorithms to analyze the data from the controllers it was first
necessary to fully investigate how they reacted to movements. This was achieved
through analysing a graph read-out of the data received from the controller as it
was moved24. This process revealed several things.

• If left stationary the data from the controller would still fluctuate.

• The controllers measure gravity which is affected by the accelerometers an-
gle to earth.

• Whilst stationary these measurements are approximately 100 to 150 when
varying the controller between two extremes on one axis

• Two controllers give slightly different readings when placed in the same po-
sition - they are not calibrated.

These issues were taken into account when designing analysis algorithms to rec-
ognize specific cushion movement.

In order to allow controllers to be interchanged a function was designed to allow for
their calibration. The controller is left stationary in six different positions before it
is inserted into the cushion. Once the reading settles in each position the relevant
button on screen is clicked. This process creates three different calibrated versions
of the data; the original; one that varies from 0 to 50; and one that is centered on 0.
These are then used for further analysis.

There are three different algorithms that analyze calibrated accelerometer data.
Each one looking for a data trend that would represent a specific type of physi-
cal exertion being directed upon the cushion and therefore the controller inside it.
The types of physical exertion the algorithms are designed to recognize are:

• hit - a sharp impact is applied to the cushion

• shake - the cushion is shaken vigorously
22A network protocol which allows the creation of connections over which streams of data can be

sent.
23End-points for sending and receiving data.
24Courtesy of Hiroaki’s ’DarwiinRemote’ application

24

• bow - smooth oscillation between two points

The first algorithm determines whether the cushion has been hit. The total sum of
accelerometer readings is taken as the input. Each reading is then compared with
the fifth last reading. If there is a difference of > 20 between them the cushion has
been hit. This algorithm works on the basis that hitting the cushion will produce a
sharp increase or decrease in accelerometer readings.

The second algorithm determines whether the cushion is being shaken. The total
sum of all accelerometer readings is also used as its input. This data is used to
calibrate a center reading x. If the reading then alternates between > x + 2 and
< x − 2 five times per second the cushion is being shaken. The algorithm works
on the basis that shaking the cushion will result in a continuous acceleration then
deceleration of the overall accelerometer readings.

The third algorithm determines whether the cushion is being bowed. The algorithm
is similar to the shake algorithm in that it takes the total sum of all accelerometer
readings as it’s input, uses this to calibrate a center reading x. If the reading then
alternates between > x+4 and < x−4 the cushion is being bowed. However, this
algorithm also measures the intensity of the bowing which is done by averaging the
acceleration over 2.5 oscillations. This is based on the theory that a more intense
bowing technique will produce a higher average acceleration.

Accelerometer readings are also used to vary parameters such as link properties
within the physical model, pitch and Fast Fourier Transform (FFT) manipulation
of the synthesized audio. While these are not directly linked to specific physi-
cal exertions they allow an extra level of control to be derived from the cushions
movements thus creating a more complex sound object.

Audio Synthesis

The heart of the synthesis engine is a 3D physical model based on the equilateral
triangle pyramid model25. This physical model was made using a Mass-Spring-
Damper (MSD) system which allows masses to be placed in different loci within a
virtual space and then connected using links. Once a force is imposed on a mass
within the model it transfers through links to adjacent masses. Link properties such
as rigidity and damping mean that the force will decrease as it passes from mass
to mass. The model is anchored to fixed masses to ensure it will not float off once
a force is imposed. If the algorithms discussed in the previous section show the
cushion is either being hit, shaken or bowed these characteristics are artificially

25See 3.5.3 ‘Model’

25

simulated on the physical model. However, the physical model in itself does not
create the audio, it simply imitates a real-world physical reaction to forces. The
audio synthesis is achieved through a process called ‘scanned synthesis’.

‘Scanned synthesis’ involves the constant monitoring of the masses within the
physical model[24]. Each time the model is updated the new X, Y and Z posi-
tion, with regards to their original position, of every mass in the model is scanned
and written to an array in a specific order. Essentially this process creates three dy-
namic wavetables, one for each axis, that represent the physical models state and
can be read at an audio rate. The speed at which the wavetables are read through
determines the pitch of the audio output.

3.5.4 Concerns

Although the final iteration of this system is deemed to be a success in relation to
the original intentions it is within its creation that the limitations of both time and
technology were most visible. Indeed there were several points where the creation
of the system was forced to diverge from the chosen path due to either the complex
computing knowledge required or technological limitations; the most notable of
these concerned the synthesis and interactivity elements of the system.

Physical modelling synthesis was originally chosen as the basis for the systems
synthesis engine as it offered a means by which a pseudo-natural audio output
could be created that would be both representative of the physical shape of the real-
world objects(cushions) and the forces applied to them. However, upon creation of
a physical model within PD it became apparent that this would be impossible.

The ‘msd3D’ object used for the creation of physical models requires that it be
‘driven’ by a separate metronome object; each time the metronome ‘clicks’ the
position of masses within the physical model are updated. Therefore, to create a
high-quality audio signal the physical model must be driven at an audio rate i.e.
the model must be updated 44,100 times per second. After several failed attempts
and subsequent follow-up research it became apparent that PD was simply inca-
pable of generating metronome ‘clicks’ at the speed required. Scanned synthesis
was chosen as it was the closest achievable alternative that allowed realisation of
the original aim, even if this realisation was only partial.

Further problems were met when investigating how to implement interactivity with
the system through the analysis of accelerometer data. As mentioned earlier26 one-
to-one mapping of physical interface data to system parameters is simple to imple-
ment, however, it would not aid in the aim to create an expressive environment[9].

26See section 3.2.4

26

Therefore it was decided that a many-to-many mapping strategy would be adopted
and in particular a gestural recognition element would be implemented within the
system.

Much of the literature on the subject suggests that the most effective means for ges-
ture recognition are either Hidden Markov Models[21] [12] [26] or Neural Nets[17]
[1] [25]. Despite this neither model could be implemented because of the knowl-
edge required; this area and its associated models represent a specialist area the
scope of which was beyond this project. While this did not prevent the inclusion of
gestural recognition within the system it did limit the spectrum of possible gestures
to those simple enough that algorithms could be successfully designed to recognise
them.

While these setbacks were not un-passable blockades making the piece impossi-
ble the process of negotiating around them did shape it somewhat. Indeed the
differences and compromise between artistic vision and technological or practical
feasibility were most recognisable within the creation of this piece.

27

3.6 Fruit

3.6.1 Intention

Still life images are recognisable as part of the heritage of western art. However,
the iconic portrayal of bowls of fruit forever sealed in a single state has arguably
passed over into the public consciousness. This piece seeks to release the image
and place it back within its temporal context. In doing this the fruit is finally
allowed to follow its natural course and decay. It is this process of decay which is
highlighted by the addition of electronics and the subsequent sonification of what
is essentially the fruits state of being.

3.6.2 Overview

Pieces of fruit are set up on a table in an arrangement indicative of ‘still life’ art-
works. These pieces of fruit are then connected in series using electrodes which
initiate a chemical reaction generating a voltage. Different groupings of fruit are
then connected to circuits which produce a square-wave audio output indicative
of the received voltage. As the fruit decays the voltage output by them decreases
and the frequencies generated by the circuits change. Differences in fruit group-
ings will produce different rates of change within the voltage and therefore the
frequency output by the connected circuit.

3.6.3 Technical Implementation

The framework consists of two main elements; Fruit Battery; Circuit; which will
be outlined in the following sections.

Fruit Battery

The ‘fruit battery’ experiment is commonly used in many lower education estab-
lishments to display how a piece of fruit can create a voltage output. The experi-
ment involves inserting a copper and zinc electrode into a piece of fruit. The reac-
tion between the electrodes and the fruit creates a voltage. The voltage produced is
somewhat reliant on the type of fruit used- a lemon can on average produce approx-
imately 2.5v to 3v. To produce a higher voltage pieces of fruit can be connected in
series in the same way normal batteries would be.

28

Circuit

The circuit itself is a common circuit based around a single 7555 timer chip27

that allows the user to specify a frequency of operation. This can be done either
by effecting the contol voltage with any type of variable resistor or supplying the
circuit with a secondary voltage which can be compared to the control voltage. In
this form it acts like a crude Voltage Controlled Oscillator (VCO) with square wave
output.

27A low-power design of the standard 555 timer chip capable of implementing a variety of timer
and multivibrator applications.

29

Chapter 4

Conclusion

Although I feel the pieces outlined in the previous chapter can be seen as some-
what successful in satisfying their initial aims, the process of their creation has
raised one issue in particular which I would like to now discuss. This issue per-
tains to how I define myself in relation to the creation of these works and raises the
question: am I truly the composer of these works?

Partial motivation for this question resides in the differences between the final prod-
uct in these pieces and that traditionally expected within composition. Common
composition practice strives towards an end in which a musical blueprint (score) is
created or a piece is presented in recorded format, a factor which can be attributed
to an obsession with the ‘fixity of the work’[5]. With regards to the pieces men-
tioned in the previous chapter only one fits this description (data).

The final product of the remaining four differs in that they are dynamic systems
that produce an audio output based on real-time interpretation of audio, physical
events or the state of fruit. Whilst each system produces a similar audio output each
time it is used the probability that these audio outputs will do anything more than
exhibit a resemblance is small. This is because within these systems the ‘music’ is
abstract, existing only in thought until it is realised through the use of the system.

Originally I assumed that because I had designed and created the systems I was, by
default, the composer of the audio they output. However, on reflection this seems
to be an over simplification of the relationships involved. While it is true that I
supplied the rules of the system regarding the definitions of causes and their sub-
sequent effects, during run-time control is delegated to either audio input, fruit or
user; I can no longer influence the system’s output.

The question of who is the composer then becomes far more complicated. Can I
take the credit for the audio output as its composer even though I have delegated

30

direct control over its creation? One could argue that the rules I have embodied
in these systems are akin to those inherent in musical instruments. When playing
a tuned guitar the action of plucking the ‘A string’ whilst fretting the 3rd fret of
that string will produce the note ‘C’. This is absolute; the outcome of this action
will always result in the same basic note1. Therefore a musical instrument can be
thought of as a system embodying a specific rule set which governs how it reacts
to events imposed upon it.

In this manner the systems I created would appear to be more consistent with the
above definition of a musical instrument. Given this similarity the composer, or
rather improviser due to its spontaneous nature, of any audio output would be the
person or thing imposing the events on the system and not the creator of the system;
no one would argue that Bartolomeo Cristifori di Francesco is the composer of all
music played upon the piano simply because he invented it. Therefore although I
can claim credit for the creation of the system I cannot assume credit as the com-
poser of its audio output unless I am imposing events on the system myself. In this
light I am an engineer of tools which aid composition, not a composer.

While this argument seems logically sound there are further factors that differ-
entiate the systems in question from musical instruments. Due to the symbiotic
relationship between musical instruments and compositional practice the design
and creation of these instruments has had to adhere somewhat to the demands of
compositional process[2], a point which their use of the 12-tone equal tempera-
ment pitch model attests to. Thus these instruments can be viewed as being built
upon or in conjunction with a compositional model that exists separated from the
instrument.

In contrast each of these systems is not solely based on this or any other previously
defined compositional rules. In fact their design and creation also involved the
creation and utilisation of specific compositional models entwined with both the
technology and ideas central to that system. Whilst the compositional model em-
bodied in most classical musical instruments allows for a particularly wide range of
possibilities these compositional models offer a far narrower spectrum. This lim-
ited range of possibilities restricts any composition using the system to a relatively
small niche.

It could be argued that by limiting the area of composition to such a small number
of possibilities I am at least partially responsible for the audio output. Indeed we
have established that as I do not have direct control over the events imposed on
the system I cannot claim complete credit for the composition. However, in limit-

1Although there will be some difference present in the nuance of transients within the attack of
the sound

31

ing compositional opportunities available, to whoever or whatever is imposing the
events, to the point where each separate audio output of the system is distinguish-
able as being from that system I feel that I am more than simply an engineer of
tools.

This question is further convoluted by the realisation that, in the process of creating
these systems, my focus and passion was the technology rather than the music. In-
stead of beginning with a musical idea or aim which would then be accomplished
through the use of technology I began with the technology. The technology would
suggest certain possibilities that I would then mould into what I felt was an inter-
esting aural output. The music then was somewhat a by-product of playing with
this technology. This would indeed suggest that I am an engineer.

Putting technology first in the creation process could be attributed to an error on
my behalf. However, I would argue that this problem is somewhat inherent in my
research topic choice. In asserting that I would create pieces which were both
reliant and entwined with technology I essentially shackled myself to its use. Sub-
sequently any ideas for pieces were limited in that they had to contain technology.
It is important to point out that this limitation was narrowed further as any tech-
nology used had to be of a type which was accessible, fitted within the budget and
that I could develop an understanding of within a year2. As technology was the one
absolute within the creation process it is not surprising that it became the primary
focus.

However, one could argue that the process of putting technology first is comparable
to writing a composition for a pre-specified group of instruments. Within composi-
tion of this nature the composer is limited to a group of instruments which suggest
certain possibilities[2] in the same manner the choice of technology did regarding
my process of creation.

This leaves me in a state of flux, lost between two absolutes. It would seem that
what I am doing is situated somewhere between the discipline of a composer and
that of an engineer. The feeling of uncertainty concerning my role within the cre-
ation of these artifacts is unnerving.

2See sections 3.2.4 and 3.5.4

32

Bibliography

[1] K. Boehm, W. Broll, and M. Sokolewicz. Dynamic gesture recognition using
neural networks; a fundament for advanced interaction construction. SPIE,
Conference Electronic Imaging Science and Technology, 98, 1994.

[2] W. Branchi. The State of Anxiety. Computer Music Journal, 7(1):8–10, 1983.

[3] C. Brown, J. Bischoff, and T. Perkis. Bringing Digital Music to Life. Com-
puter Music Journal, 20(2):28–32, 1996.

[4] J. Chadabe. The limitations of mapping as a structural descriptive in elec-
tronic instruments. Proceedings of the 2002 Conference on New interfaces
for Musical Expression, pages 1–5, 2002.

[5] S. Emmerson. Crossing cultural boundaries through technology? In S. Em-
merson, editor, Music, Electronic Media and Culture, pages 115–37. Ashgate,
2000.

[6] C. Hamm. Privileging the Moment: Cage, Jung, Synchronicity, Postmod-
ernism. The Journal of Musicology, 15(2):278–289, 1997.

[7] A. Hunt, M. Wanderley, and R. Kirk. Towards a model for instrumental map-
ping in expert musical interaction. Proc. of the 2000 International Computer
Music Conference. San Francisco, CA: International Computer Music Asso-
ciation, pages 209–211, 2000.

[8] A. Hunt and M.M. Wanderley. Mapping performer parameters to synthesis
engines. Organised Sound, 7(02):97–108, 2003.

[9] A. Hunt, M.M. Wanderley, and M. Paradis. The Importance of Parameter
Mapping in Electronic Instrument Design. Journal of New Music Research,
32(4):429–440, 2003.

[10] S. Jordà. FMOL: Toward User-Friendly, Sophisticated New Musical Instru-
ments. Computer Music Journal, 26(3):23–39, 2002.

33

[11] T. Kogawa. Toward Polymorphous Radio. In D. Augaitis, D. Lander, and
W.P. Gallery, editors, Radio Rethink: Art, Sound and Transmission, pages
287–99. Walter Phillips Gallery, 1994.

[12] H.K. Lee and J.H. Kim. An HMM-based threshold model approach for ges-
ture recognition. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 21(10):961–973, 1999.

[13] C. Levi-Strauss. The Savage Mind. University of Chicago Press, 1966.

[14] G. Loy. The Composer Seduced into Programming. Perspectives of New
Music, 19(1/2):184–198, 1980.

[15] J. Malloch and M.M. Wanderly. The T-Stick: From Musical Interface to
Musical Instrument. Proceedings of the 2007 Conference on New Interfaces
for Musical Expression, pages 66–69, 2007.

[16] A. Mulder, S. Fels, and K. Mase. Empty-handed Gesture Analysis in
Max/FTS. Kansei, The Technology of Emotion. Proceedings of the AIMI
International Workshop, pages 3–4, 1997.

[17] K. Murakami and H. Taguchi. Gesture recognition using recurrent neural
networks. Proceedings of the SIGCHI conference on Human factors in com-
puting systems: Reaching through technology, pages 237–242, 1991.

[18] G.L. Nelson. Who Can Be a Composer: New Paradigms for Teaching Cre-
ative Process in Music. Proceedings of the Fifth International Technological
Directions in Music Learning Conference, 1998.

[19] D.A. Norman. The psychology of everyday things. Basic Books New York,
1988.

[20] M. Puckette, T. Apel, and D. Zicarelli. Real-time audio analysis tools for
Pd and MSP. Proceedings of the International Computer Music Conference,
pages 109–112, 1998.

[21] G. Rigoll, A. Kosmala, and S. Eickeler. High Performance Real-Time Gesture
Recognition Using Hidden Markov Models. Gesture and Sign Language in
Human-Computer Interaction, pages 69–80, 1997.

[22] C. Roads. The Computer Music Tutorial. Mit Press, 1996.

[23] J.B. Rovan, M.M. Wanderley, S. Dubnov, and P. Depalle. Instrumental Ges-
tural Mapping Strategies as Expressivity Determinants in Computer Music
Performance. KANSEI-The Technology of Emotion, 1997.

34

[24] B. Verplank, M. Mathews, and R. Shaw. Scanned synthesis. The Journal of
the Acoustical Society of America, 109:2400, 2001.

[25] J. Weissmann and R. Salomon. Gesture recognition for virtual reality ap-
plications using datagloves and neural networks. Neural Networks, 1999.
IJCNN’99. International Joint Conference on, 3, 1999.

[26] AD Wilson and AF Bobick. Parametric hidden Markov models for gesture
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 21(9):884–900, 1999.

[27] T. Wishart. The Composition of “Vox-5”. Computer Music Journal,
12(4):21–27, 1988.

[28] T. Wishart. On Sonic Art. Harwood Academic Publishers, 1996.

35

