2,316 research outputs found

    A Study of How Young Adults Leverage Multiple Profile Management Functionality in Managing their Online Reputation on Social Networking Sites

    Get PDF
    With privacy settings on social networking sites (SNS) perceived as complex and difficult to use and maintain, young adults can be left vulnerable to others accessing and using their personal information. Consequences of not regulating the boundaries their information on SNS include the ability for current and future employers to make career-impacting decisions based upon their online reputation that may include disqualifying them as job candidates. On SNS, such as Facebook, LinkedIn, and Twitter, young adults must decide on how to manage their online reputation by regulating boundaries to their own personal and professional information and identities. One known practice for the regulation of boundaries is the use of multiple profile management (MPM), where users of SNS create and use multiple accounts on a SNS and separate the social and professional identities that they disclose publicly and privately. The purpose of the study was to understand the lived experiences of young adults in how they regulate boundaries on SNS, through the use of MPM, as they manage their online reputation to different audiences. The practice was studied by applying interpretative phenomenological analysis (IPA) through interviewing young adults of 18-23 years of age, who use MPM on a SNS. Semi-structured interviews permitted participants to provide in-depth descriptions of their lived experiences. Eight themes were identified and described based on the analysis of the interviews that include: SNS use with online audiences, motivations for using MPM, the processes for the presentation of self, online search results, privacy settings, untagging SNS posts, self-editing and censorship, and new features. The themes describe the complexity and challenges that young adults face with regulating boundaries with their professional and social identities online through the use of MPM. Findings from this study have implications for a variety of audiences. Through the findings of this study, SNS developers can introduce new features, improve usability related to privacy management, and further encourage use of their networks. Users of SNS can use this study to understand risks of using SNS and for learning of practices for how to manage their online reputation on SNS

    Security by Spatial Reference:Using Relative Positioning to Authenticate Devices for Spontaneous Interaction

    Get PDF
    Spontaneous interaction is a desirable characteristic associated with mobile and ubiquitous computing. The aim is to enable users to connect their personal devices with devices encountered in their environment in order to take advantage of interaction opportunities in accordance with their situation. However, it is difficult to secure spontaneous interaction as this requires authentication of the encountered device, in the absence of any prior knowledge of the device. In this paper we present a method for establishing and securing spontaneous interactions on the basis of emphspatial references that capture the spatial relationship of the involved devices. Spatial references are obtained by accurate sensing of relative device positions, presented to the user for initiation of interactions, and used in a peer authentication protocol that exploits a novel mechanism for message transfer over ultrasound to ensures spatial authenticity of the sender

    Topological Charge Fluctuations and Low-Lying Dirac Eigenmodes

    Get PDF
    We discuss the utility of low-lying Dirac eigenmodes for studying the nature of topological charge fluctuations in QCD. The implications of previous results using the local chirality histogram method are discussed, and the new results using the overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported. While the degree of local chirality does not change appreciably closer to the continuum limit, we find that the size and density of local structures responsible for chiral peaking do change significantly. The resulting values are in disagreement with the assumptions of the Instanton Liquid Model. We conclude that the fluctuations of topological charge in the QCD vacuum are not locally quantized.Comment: 3 pages, 4 figures, Lattice2001(confinement

    Related Enteric Viruses Have Different Requirements for Host Microbiota in Mice

    Get PDF
    Accumulating evidence suggests that intestinal bacteria promote enteric virus infection in mice. For example, previous work demonstrated that antibiotic treatment of mice prior to oral infection with poliovirus reduced viral replication and pathogenesis. Here, we examined the effect of antibiotic treatment on infection with coxsackievirus B3 (CVB3), a picornavirus closely related to poliovirus. We treated mice with a mixture of five antibiotics to deplete host microbiota and examined CVB3 replication and pathogenesis following oral inoculation. We found that, as seen with poliovirus, CVB3 shedding and pathogenesis were reduced in antibiotic-treated mice. While treatment with just two antibiotics, vancomycin and ampicillin, was sufficient to reduce CVB3 replication and pathogenesis, this treatment had no effect on poliovirus. The quantity and composition of bacterial communities were altered by treatment with the five-antibiotic cocktail and by treatment with vancomycin and ampicillin. To determine whether more-subtle changes in bacterial populations impact viral replication, we examined viral infection in mice treated with milder antibiotic regimens. Mice treated with one-tenth the standard concentration of the normal antibiotic cocktail supported replication of poliovirus but not CVB3. Importantly, a single dose of one antibiotic, streptomycin, was sufficient to reduce CVB3 shedding and pathogenesis while having no effect on poliovirus shedding and pathogenesis. Overall, replication and pathogenesis of CVB3 are more sensitive to antibiotic treatment than poliovirus, indicating that closely related viruses may differ with respect to their reliance on microbiota. IMPORTANCE Recent data indicate that intestinal bacteria promote intestinal infection of several enteric viruses. Here, we show that coxsackievirus, an enteric virus in the picornavirus family, also relies on microbiota for intestinal replication and pathogenesis. Relatively minor depletion of the microbiota was sufficient to decrease coxsackievirus infection, while poliovirus infection was unaffected. Surprisingly, a single dose of one antibiotic was sufficient to reduce coxsackievirus infection. Therefore, these data indicate that closely related viruses may differ with respect to their reliance on microbiota

    Towards efficient subsumption

    Full text link

    A single-amino-acid change in murine norovirus NS1/2 is sufficient for colonic tropism and persistence

    Get PDF
    Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence

    Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD

    Get PDF
    The low-lying eigenmodes of the Dirac operator associated with typical gauge field configurations in QCD encode, among other low-energy properties, the physics behind the solution to the UA(1)U_A(1) problem (i.e. the origin of the η′\eta' mass), the nature of spontaneous chiral symmetry breaking, and the physics of string-breaking, quark-antiquark pair production, and the OZI rule. Moreover, the space-time chiral structure of these eigenmodes reflects the space-time topological structure of the underlying gauge field. We present evidence from lattice QCD on the local chiral structure of low Dirac eigenmodes leading to the conclusion that topological charge fluctuations of the QCD vacuum are not instanton-dominated. The result supports Witten's arguments that topological charge is produced by confinement-related gauge fluctuations rather than instantons.Comment: 35 pages, 11 figure
    • …
    corecore