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Abstract The distribution of sample units in multivariate species space typically departs strongly from the 1 

multivariate normal distribution. Instead of forming a hyperellipse in species space, the sample points 2 

tend to lie along high-dimensional edges of the space. This dust bunny distribution is seen in most 3 

ecological community data sets. The practical consequences of the distribution to the analysis of 4 

community data are well known and severe, but no one has demonstrated how population processes 5 

generate these problems. We evaluate potential causes of dust bunny distributions by simulating a large 6 

number of non-equilibrial communities under varying conditions, verifying that they resemble real data, 7 

then analyzing the relationship between the intensity of the dust bunny distribution in these data sets and 8 

the population and environmental parameters that gave rise to them. All community data sets, both 9 

simulated and real, departed strongly from multivariate normal and lognormal distributions. Four 10 

parameters influenced intensity of dust bunnies: time since community-replacing disturbance, number of 11 

environmental factors, dispersal limitation, and niche width. Samples measured soon after community-12 

replacing disturbance had strong dust bunny distributions. Near-equilibrial communities sampled from a 13 

narrow range in environments lead to only weak dust bunnies. Community samples taken across multiple 14 

simultaneous strong environmental gradients are likely to show strong dust bunnies, regardless of the 15 

successional state, niche width of the component species, and degree of dispersal limitation. Dust bunny 16 

intensity depends not only on population processes and disturbance, but also on the properties of the 17 

sample, such as sample unit area or volume. 18 

 19 

Keywords Community analysis, disturbance, environment, niche width, simulation model 20 

21 
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 22 

Introduction 23 

Ecological community data commonly consist of species abundance or presence recorded in a set of 24 

sample units. With such data, sample units can be conceptualized as points in a coordinate system defined 25 

by species abundance (species space; Goodall 1963). The distribution of sample units in multivariate 26 

species space typically departs strongly from a multivariate normal distribution. Instead of forming a 27 

hyperellipse in species space, the sample points instead tend to lie along high-dimensional edges of the 28 

space. This dust bunny distribution (McCune and Grace 2002) is so called because it resembles a “dust 29 

bunny,” the collection of lint and dust that tends to accumulate along the edges of our living spaces (Fig. 30 

1). The analogy is imperfect, for reasons discussed below, but our teaching has shown this to be a useful 31 

and memorable way of conveying a fundamental difference between ecological community data and the 32 

multivariate normal distribution assumed by traditional multivariate statistics. The dust bunny distribution 33 

can be considered a particular kind of zero-inflated multivariate distribution that is characteristic of 34 

ecological community data. Naming and understanding this common empirical phenomenon in 35 

community ecology can improve expectations for analyzing community datasets and inform the 36 

development of appropriate statistical models. The dust bunny is observed even for simple data sets 37 

involving a few species along a single environmental gradient. Although the dust bunny distribution is 38 

one of the most consistent statistical properties of ecological community data, the biological mechanisms 39 

producing this pattern have never been explained. Our focus here is not on how to analyze such data, but 40 

rather contributing toward the theory of its genesis. 41 

Dust bunny distributions occur when each sample unit has only a small subset of the available 42 

species pool, leading to a large number of zeros in the community matrix. The presence of only a small 43 

number of species in each sample unit may occur because of stochastic dispersal limitations, competition 44 

among species, recent community-replacing disturbance, or environmental conditions in the sample unit 45 

being unsuitable for many of the species in the regional species pool.  46 
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Our goals diverge from studies on frequency distributions within species (e.g., Bliss and Fisher 47 

1953; Cassie 1962) in that our concerns are multivariate and apply to both continuous data (e.g. biomass, 48 

density, cover) and discrete data (e.g., counts or cover classes). We focus on the distributional properties 49 

of sample units in species space, a high-dimensional coordinate system where each dimension of the 50 

space is an axis defined by the abundance of a single species, and each sample unit therefore occupies a 51 

point in that space (Goodall 1963). Despite the common use of non-Euclidean (city-block) distance 52 

measures in community ecology, most statistical tools taught to biologists operate in Euclidean space. 53 

Regardless of what methods we choose for analysis, community ecologists still need to be able to explain 54 

to a broader audience how the properties of their data in Euclidean space differ from a multivariate 55 

normal distribution. 56 

The practical consequences of the dust bunny distribution to data analysis are well known and 57 

severe. Analytical tools such as principal components analysis that seek linear relationships among 58 

variables perform poorly with ecological community data; this has been known for over 40 years (e.g. 59 

Beals 1973; Whittaker and Gauch 1973). Even a simple noiseless data set of three species with Gaussian 60 

responses to a single environmental gradient shows strong nonlinearity of that gradient when sample units 61 

are plotted in species space. Remedies exist, such as nonmetric multidimensional scaling (Kruskal 1964), 62 

that can recover environmental gradients that are expressed nonlinearly in species space (Clarke 1993; 63 

McCune and Grace 2002) and using proportional city-block distance measures. 64 

Apparently no one has specifically focused on revealing the population processes that give rise to 65 

the dust bunny distribution. Although McCune and Grace (2002) suggested the dust bunny distribution as 66 

an empirical fact for most community data sets, they did not attempt to quantify the problem nor to 67 

explain why community data are so distributed, instead focusing on the characteristics of the data and its 68 

consequences for analysis. Similarly, other authors have written at length on related issues, such as the 69 

tendency for abundance data to be strongly right skewed and zero rich (Gaston and McArdle 1994; 70 

Anderson 2001; Peck 2010), the “zero truncation problem” (Beals 1984), and the double zero or joint 71 
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absence problem (Legendre and Legendre 1998). None of these, however, directly address the processes 72 

that generate dust bunny distributions. It is important to evaluate potential causes of the dust bunny 73 

distribution, so that we can better anticipate the effect of study design on the intensity of dust bunnies in 74 

our data, promoting more effective analyses. For example, we can select sample unit sizes that are 75 

appropriate at the scale of the organisms and environmental factors of interest, such that they have enough 76 

in common and low enough dust bunny intensity to analyze them usefully. When dust bunnies are very 77 

severe, it becomes difficult to extract gradients of interest even with the most effective analytical 78 

techniques. Furthermore, because the dust bunny distribution is intimately related to beta diversity, 79 

understanding what factors affect the strength of dust bunny distributions also contributes to our 80 

understanding of what controls beta diversity in community samples. 81 

Here we first define measures of the strength of the dust bunny distribution. These are simple, 82 

model-free descriptors of the tendency of species abundance data to lie along the high-dimensional edges 83 

of the underlying space. We then demonstrate that this pattern could result from any of four well-known 84 

ecological processes and examine the impact of each on the severity of the pattern. We do this with a 85 

simple population process model simultaneously applied to many species. Because we expect that a given 86 

statistical distribution can arise from very different processes, we anticipate that processes other than 87 

those that we examine could also create dust bunny distributions. 88 

Our simulation model starts with unoccupied space, then builds populations for 30 species taking 89 

into account stochastic immigration, community-limited population growth, species-specific competitive 90 

ability, and variable species performance along multiple environmental gradients. We aim not for hyper-91 

realism, but rather to expose simple mechanisms that may produce dust bunnies. 92 

We evaluate possible causes of dust bunny distributions by generating a large number of non-93 

equilibrial communities under varying conditions, then analyzing the relationship between the intensity of 94 

the dust bunny distribution in these data sets and the population and environmental drivers. We use our 95 

simulations of ecological community development to answer the following questions: 96 
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1. How does dust bunny intensity vary with time since disturbance? We hypothesize that stochastic 97 

initial colonization renders communities with strong dust bunny distributions, while competitive 98 

and environmental effects gradually sort communities into relatively consistent species 99 

composition, weakening the dust bunny distribution. The longer the time between disturbances, 100 

the more a community approaches equilibrium, assuming a stable environment. The less stable 101 

the environment, the less opportunity a community has to approach an equilibrial state. 102 

2. How does dust bunny intensity vary with average niche width (and thus beta diversity) along 103 

environmental gradients? We anticipate that narrower niches create stronger dust bunnies, 104 

because a larger proportion of each environmental gradient will lie outside a species tolerances, 105 

producing more zeros and small values in the matrix. 106 

3. How does dust bunny intensity vary with the degree of community-wide dispersal limitation? We 107 

hypothesize that dust bunny distributions can be created by dispersal limitations, with or without 108 

the influence of one or more environmental gradients. We anticipate that the stronger the 109 

dispersal limitation, the stronger the dust bunnies, because dispersal limitations heighten the 110 

relative importance of the stochasticity of immigration, producing many zeros in the data matrix, 111 

even in optimum habitats for a given species.  112 

4. How does dust bunny intensity vary with number of influential environmental gradients? We 113 

anticipate that increasing the number of environmental controls on species increases the 114 

proportion of uninhabitable space for a given species, and thus increases the number of zeros in a 115 

data set. 116 

Methods 117 

Community Development Model 118 

We model multiple population dynamics simultaneously and as simply as possible to produce 119 

dust bunny distributions (Online Resource 1; briefly summarized here). We develop communities in 120 

unoccupied space, simulating response to a community-replacing disturbance. Populations are described 121 
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by the density or counts of a given species. The model is discrete with respect to time. One time step can 122 

be considered either a single generation (in which case we assume that all species in the community have 123 

the same generation time), or a specific time interval (e.g. 1 year). 124 

Species have Gaussian responses on one or more environmental gradients. Recognizing the 125 

inherent tradeoffs between competitive ability and reproductive effort, both immigration rates and the 126 

intrinsic rate of population growth are set to vary negatively with competitive ability. This "competitive 127 

ability" incorporates both a competitive effect on other species (via its relationship to immigration and 128 

growth rates) and a competitive response to other species (via its effective carrying capacity). 129 

Immigration is treated as a species-specific stochastic Poisson process, with immigration pressure 130 

varying linearly and negatively with competitive ability. To control the system-wide balance between 131 

growth rates and dispersal limitations, we introduce a dispersal limitation factor. This parameter is held 132 

constant for a given simulation, but can be varied to increase or decrease the dispersal limitation built into 133 

the whole community.  134 

Community matrices.— Each community matrix (A, n sample units × p species), was assembled 135 

by running the model once for each sample unit, choosing the following parameters (Online Resource 1): 136 

degree of dispersal limitation, niche width, number of environmental gradients, and number of time steps 137 

(or generations). Sample units in a given matrix vary in position on one or more environmental gradients. 138 

Species in a given matrix vary in position of optima on those gradients, degree of dispersal limitation, 139 

competitive abilities, and intrinsic growth rates. Abundances need not apply to species per se; they can 140 

also be higher taxa (genera, families) or frequencies of various genetic markers that are presumed to be 141 

shared by closely related organisms. The sample unit is normally a fixed area, fixed volume, or some 142 

other standardization of effort; the sample is taken from a variety of locations and/or dates. 143 

Data adjustments.—Most analysts faced with real data sets similar to those analyzed here would 144 

transform the data before analysis. Because we visualize the data as counts, and the counts span several 145 

orders of magnitude, we transformed by log10(a + 1) before calculating statistics that describe dust bunny 146 
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strength. This transformation also preceded our beta diversity calculation that is based on the average 147 

Sørensen distance among sample units. Because transformations affect distributional properties, we 148 

expect that choosing other transformations could affect measures of dust bunny intensity. 149 

Dust bunnies in High-Dimensional Spaces.— Assume an n-dimensional (nD) Cartesian 150 

coordinate system (i.e. of mutually perpendicular axes, with each axis intersecting the origin). Each pair 151 

of axes defines a plane. We define a corner as the intersection of two or more of these planes. For species 152 

data we need to consider only the non-negative part of this space (points with all coordinates ≥ 0). 153 

A 2D corner is the intersection of two planes. The points (0,0,z) lie on a 2D corner in a 3D space. 154 

Similarly, the points (0,0,y,z) form a plane that is a 2D corner in a 4D space. Similarly, a 3D corner is the 155 

intersection of three planes. The point (0,0,0) lies on a 3D corner in a 3D space and the points (0,0,0,z) lie 156 

on a 3D corner in a 4D space. 157 

Generalizing, a point in an n-dimensional space that has k coordinates with a value of zero lies on 158 

a kD corner of the nD space. Applying this to community data, a sample unit with s of p species lie on a 159 

(p-s)-dimensional corner of the p-dimensional species space. For example, a sample unit with 10 species 160 

in a data set with 50 species lies on a 40D corner of the 50D species space. In a typical data set, most 161 

sample units will be missing many of the species, most sample units lie on high-dimensional corners of 162 

the space. Like dust bunnies in a 3D room, dust tends to accumulate not just in the 3D corners of the 163 

space, but also in the lower dimensional (2D) corners. 164 

Evaluation of Dust Bunny Intensity.— The intensity of multivariate dust bunny distributions in 165 

community data sets can be expressed by various statistics. Dust bunny distributions have high positive 166 

skew and kurtosis, but those statistics can also be high for non-dust bunnies. We used the following two 167 

simple measures of degree of match with a multivariate dust bunny, as defined qualitatively above. 168 

1. Percentage of the community matrix that is zero. All species with no occurrences have been 169 

removed, such that the matrix has at least one nonzero value for each species. The maximum 170 

percentage of zeros is obtained with only one nonzero value for each of p species, which yields 171 
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100(1 – p/(np)) = 100-100/n% for a perfect dust bunny and 0% for the strongest anti-dust bunny, 172 

where n is the number of sample units. This measure ignores quantitative values in the matrix, in 173 

that the proportion of zeros is the same whether species are represented by presence-absence (1 or 174 

0) or quantitative values. The expected value for the percentage of zeros approaches zero for a 175 

multivariate normal distribution. 176 

2. We define a quantitative dust bunny intensity (DBI) as one minus the matrix mean when each 177 

species is relativized to (0-1) by the maximum ( ) value observed for that species, assuming 178 

that the smallest possible aij = 0 for each species: 179 

  (1) 180 

We calculated DBI based on raw numbers as well as their logarithms, applied before 181 

relativization. 182 

Empty species (all zeros) are removed before these calculations, because analysts would typically 183 

not include species that did not occur in the data set. Empty sample units are, however, retained, because 184 

they could be encountered in sampling and might be considered informative (e.g. recent disturbance or 185 

harsh environment). Because the standard proportional distance measures cannot be applied to this kind 186 

of problem (e.g. Bray-Curtis and chi-square distance require division by sample unit totals), one approach 187 

is to remove empty sample units. But analysts may wish to retain empty sample units as carrying part of 188 

the signal of interest, choosing a distance measure that accommodates them; therefore, we retain empty 189 

sample units here. 190 

Empty sample units tend not to remain empty (McCune and Grace 2002, p. 38) because nature 191 

abhors a vacuum ("there does not exist a vacuum in nature"; Spinoza 1677). The multivariate origin is 192 

commonly vacant in community data sets while the extreme corner of a physical space usually has the 193 

highest concentration of dust. The dust bunny analogy is thus imperfect (McCune and Grace 2002). 194 

Nevertheless, after a sample unit is cleared of all species, it will begin to reaccumulate species, migrating 195 
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out along the corners of the high dimensional space. For example, colonization of an empty sample unit 196 

by 3 of 50 species would push that point from the origin to a 47D corner of the 50D space. 197 

The minimum DBI is zero for a perfect anti-dust bunny, where every species occurs at its 198 

maximum abundance in every sample unit. The maximum DBI is obtained with only one nonzero value 199 

for each species, which yields 1 – (p*1)/(n*p) = 1 – (1/n) ≈ 1 for large n. The expected value of DBI is 0.5 200 

for a multivariate normal distribution. Because the normal distribution is symmetric about the mean, if 201 

each species is relativized from 0 to 1, the expected value of the mean is 0.5 for each species. Similarly, 202 

the expected value of DBI based on the log abundances is 0.5 for a multivariate lognormal distribution 203 

(log transformed, then relativized by amaxj)  204 

An advantage of the percentage of zeros as a measure of dust bunny intensity is that it does not 205 

vary with most of the usual data transformations applied to species data, including log(a + 1), √a, 206 

relativization by species maximum, and relativization by sample unit totals. Conversely, the DBI 207 

responds to abundance patterns, which can contribute greatly to the apparent heterogeneity of a data set 208 

and influence the performance of ordination, clustering, and group comparison methods. 209 

Real data sets for comparison.—To evaluate the similarity of distributional properties of 210 

simulated data sets to real data sets, we selected ten real data sets for comparison (Online Resource 2). 211 

These data sets were chosen arbitrarily, subject to the following constraints: (1) include abundances that 212 

are quantitative, rather than binary or with abundance classes, (2) represent a variety of taxa, (3) represent 213 

a variety of abundance measures, including counts, densities, areal cover, peak heights for molecular 214 

markers, and frequencies of DNA sequences detected. 215 

Model Applications 216 

Overall sensitivity to population processes.—We generated 19,200 data sets of 200 sample units 217 

× 30 species with 3 replicates per combination of level of dispersal limitation, niche widths, number of 218 

environmental gradients, and maximum number of time steps (Table 1; details of model inputs, outputs, 219 
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and parameters in Online Resource 1). The model was implemented in the program DustBunny.dll (free 220 

add-in to PC-ORD 6; McCune and Mefford 2011; Fortran 90 source code available from McCune). 221 

Community-level descriptors were calculated for each data set both before and after log10(x+1) 222 

transformation. Those descriptors included our two dust bunny indices (percent of zeros and DBI), as well 223 

as Whittaker’s beta diversity (βw) and beta diversity in half changes (βd), calculated by exponential 224 

transformation of the average Sørensen distances (D, Bray and Curtis 1957, Legendre and Legendre 1998, 225 

eqn. 7.57) among sample units within a data set: 226 

  (2) 227 

Sensitivity analysis measured the importance of factors that we varied as model inputs (method in 228 

Online Resource 1). Sensitivities were analyzed by first fitting a multidimensional response surface for 229 

the DBI = f(inputs), where f is an unspecified smooth function derived with a kernel smoother, and each 230 

data point is one of the 19,200 simulated data sets. We modeled response surfaces with nonparametric 231 

multiplicative regression (NPMR; McCune 2006) using a multiplicative Gaussian kernel with a local 232 

linear model. 233 

 234 

Results and Discussion 235 

Dust bunny intensity in real and simulated data 236 

All community data sets, both simulated and real, departed strongly from multivariate normal and 237 

multivariate lognormal distributions. The two measures of dust bunny intensity, DBI and percent zeros in 238 

the community matrix, had a strong positive relationship (Fig. 2). That relationship was stronger in the 239 

case of log transformed data, because log transformation diminishes the effect of large abundance values, 240 

shifting the data toward presence-absence, the basis of the percent zeros metric. 241 

Simulated data sets had dust bunny statistics similar to those in real data sets, whether analyzed as 242 

raw data or their logarithms (Fig. 2). For log-transformed data, four of ten real data sets fell below the 243 

cloud of simulated data sets, having lower DBI for a given percentage of zeros in the community matrix. 244 
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In all four cases, sample units in the community matrix were averages of a large number of spatial or 245 

temporal subsamples rather than individual sample units. While averaging tends to reduce both the 246 

percentage of zeros and DBI, it apparently has a larger effect on the DBI based on log-transformed data, 247 

such that DBI is lower than expected for a given percentage of zeros. Three of these four data sets had the 248 

lowest average species maximum, when expressed as standard deviations from the species mean. Thus 249 

relativizations by species maximum tend to yield relatively high matrix means when the original data 250 

consist of averages of many sample units. Log transformation exaggerates this effect, which, for 251 

positively skewed data, brings the species mean much closer to the maximum than in the untransformed 252 

data. 253 

For 19,200 simulated data sets, the percentage of zeros and DBI ranged from 20.3−99.5% and 254 

0.775−0.995 respectively. Average species richness ranged from near zero to 24. Beta diversity (βd) 255 

ranged from 0.0−12.5 half changes. 256 

Effect of log transformation on DBI 257 

Log transformation of the abundance data diminished the intensity of the dust bunny distribution, 258 

for both real and simulated data (Fig. 2). In both cases, however, log transformed data still departed 259 

strongly from multivariate normality (Fig. 2). Although log transformation will often improve the ability 260 

of analytical techniques to extract pattern by deemphasizing very large values in the data matrix and 261 

providing more sensitivity at low abundances, log transformation is typically insufficient to achieve a 262 

distribution approaching multivariate normality.  263 

 264 

Controls over intensity of dust bunny distributions 265 

All four factors examined influenced intensity of dust bunnies, but varied greatly in effect size, in 266 

order of decreasing effect: number of environmental factors, dispersal limitation, time since community-267 

replacing disturbance, and niche width. Each of these is addressed below. 268 
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Number of environmental gradients.— The strongest of the four factors examined was the number of 269 

influential environmental gradients. Sensitivity analysis showed that dust bunny intensity was over ten 270 

times as sensitive to the number of environmental gradients as to the next most important factor (Table 1). 271 

Simulated data sets with three strong environmental gradients always had DBI > 0.9, regardless of the 272 

settings of the other factors (Fig. 3).  273 

Determining how many environmental gradients have affected the species in a real data set is 274 

difficult, if not impossible. Data reduction methods such as ordination commonly find 2-3 statistically 275 

supported dimensions, but these methods are designed to filter out the influence of weak gradients as 276 

noise (Gauch 1982). So although our multivariate analytical methods can reliably detect only a few 277 

underlying dimensions, surely there are many, in a declining series of importance, tapering down to 278 

obscure historical factors that left a slowly fading mark.  279 

On the other hand, species distribution or habitat models provide good evidence of the underlying 280 

complexity of community data. One can slice a community data set into its component species, then 281 

individually fit models that relate those species to a common pool of predictors. Typically, many species 282 

will express a dominant environmental or disturbance gradient, but individual species will express habitat 283 

relationships that are ignored by other species, such that the list of predictors related to one or more 284 

species is long. Because the best models for different species models incorporate different predictors, 285 

even when they are made orthogonal as in principal components of climate variables, the communities 286 

must be influenced by numerous environmental gradients. 287 

Dispersal limitation.— Dust bunny distributions were readily produced by dispersal limitations, even in 288 

the absence of environmental gradients. The intensity of dust bunny distribution rapidly increased with 289 

increasing dispersal limitation (Fig. 3). The relationship was nonlinear with a diminishing rate of increase 290 

as dispersal limitation increased. 291 

Sensitivity analysis of the simulation model revealed that, apart from the number of influential 292 

environmental gradients, the degree of dispersal limitations most strongly controlled the departure from 293 

multivariate normality toward the dust bunny distribution (Table 1). This was true whether the intensity 294 
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of the dust bunny distribution was measured as the proportion of zeros in the community matrix or as the 295 

dust bunny intensity metric (DBI). 296 

Dispersal limitation, as defined here, tunes the balance between immigration pressure on the one 297 

hand, and competitive effects and intrinsic growth rates on the other. A high dispersal limitation means 298 

that the stochastic effects of immigration are large, relative to the intrinsic rates of increase in populations 299 

and the rate at which competition is expressed. If dispersal limitations are pervasive in natural 300 

populations, as suggested by many authors (e.g. Freestone and Inouye 2006; Ricklefs 1987), then this 301 

alone is sufficient to produce the dust bunny distributions typically seen in community data sets. 302 

Time since disturbance.— Dust bunny intensity diminished with number of generations elapsed since 303 

disturbance (Fig. 3). This effect was most apparent with lower dispersal limitations and fewer influential 304 

environmental gradients. This means that strong dust bunny distributions are more likely when sampling 305 

communities soon after disturbance, relative to the generation time of the organisms. In other words, 306 

sampling early successional communities is more likely to yield strong dust bunny distributions than 307 

sampling old communities, where competition and immigration has have had a longer time to be 308 

expressed, yielding relatively deterministic and stable communities.  309 

Note that "stability" and "time since disturbance" are both relative terms, an appropriate standard 310 

being the turnover rates of the organisms that comprise the communities. For example, a forest 300 years 311 

after stand-replacing fire may still be dominated by long-lived trees that first colonized after the fire 312 

(McCune and Allen 1985). 313 

Number of generations elapsed was third in relative importance of the four factors examined, as 314 

shown by sensitivity analysis (Table 1). Dust bunny intensity, as measured by proportion of zeros in the 315 

community matrix, was about one-third as responsive to number of generations, as compared to dispersal 316 

limitation. Similarly, dust bunny intensity as measured by DBI was between one third and one half as 317 

responsive to number of generations as to dispersal limitation. 318 

Niche width.— Narrower niches tended to result in stronger dust bunnies. This effect was similar in 319 

intensity for any number of environmental gradients, other than zero where niche width had no effect on 320 
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dust bunny intensity (Fig. 4). Although niche width was the weakest of the four factors examined, its 321 

effect could be observed by holding both dispersal limitation and number of generations constant at 322 

moderate values, while allowing number of environmental gradients and niche width to vary (Fig. 4). 323 

Sensitivity analysis showed dust bunny intensity as measured by DBI to be about half as sensitive to 324 

niche width as to number of generations since disturbance, and only about a fourth as sensitive to niche 325 

width as to dispersal limitation (Table 1). 326 

 327 

Relationships among dust bunny measures and beta diversity 328 

The term beta diversity has taken on various meanings since Whittaker (1972); see reviews by 329 

Anderson et al. (2011) and Tuomisto (2010). In its most general sense, beta diversity measures 330 

heterogeneity of a community sample. Naturally, measures of beta diversity will tend to be correlated 331 

with the proportion of zeros in a community matrix. In fact, Whittaker's simplest beta diversity measure 332 

(βw) that is applicable to any community sample can be considered a hyperbolic rescaling of the 333 

proportion of zeros in a matrix (PctZeros, Online Resource 3, Fig. 3-1). Specifically, start with 334 

Whittaker's βw = (Sc/S) - 1, where Sc is the total number of species in the sample and S is the average 335 

number of species per sample unit. If q is the number of nonzero elements in the matrix of sample units × 336 

species, then q = Σsi across the i sample units and S = q/n. Then by algebra βw = n· Sc /q – 1, PctZeros = 1 337 

- q/( n· Sc), and βw = 100/(100-PctZeros) – 1. Similarly, S = p(1 - PctZeros/100), where p is the number of 338 

species in the data set. 339 

 340 

Where to find dust bunnies 341 

Sousa (1984) wrote "The differential expression of life history attributes under different regimes 342 

of disturbance produces much of the spatial and temporal heterogeneity one observes in natural 343 

assemblages." Our models demonstrate that point, and suggest that the differential expression of life 344 

history attributes along environmental gradients provides a fundamental mechanism for producing the 345 
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statistical properties of ecological community data. In other words, dust bunnies can be produced simply 346 

by interspecific variation in optima on environmental gradients combined with tradeoffs in life history 347 

characters (dispersal ability, competitive ability, and intrinsic population growth rates). It is likely, 348 

however, that dust bunnies can be observed even without tradeoffs in life history characters. For example, 349 

even under the assumption of ecological equivalence of all species, neutral theory holds that stronger 350 

dispersal limitation increases species turnover (Hubbell 2001) and thus results in more zeros in the data. 351 

Dust bunny distributions were found in all real and simulated data sets examined, but these 352 

distributions varied greatly in their degree of departure from multivariate normality. Our model results 353 

lead to predictions about what kinds of community samples are likely to have weak or strong dust bunny 354 

distributions, and thus how seriously they will depart from multivariate normality. We list several 355 

examples below. 356 

Sample units measured soon after community-replacing disturbance but within a narrow range of 357 

environments lead to strong dust bunnies. Even with little environmental variation, stochastic 358 

colonization by pioneer species and slow colonization of better competitors lead to a zero-rich data 359 

matrix. 360 

Sampling near-equilibrial communities many generations after disturbance and from a narrow 361 

range in environments should lead to only weak dust bunnies. This would be the closest approximation to 362 

multivariate normal distributions that community ecologists are likely to find with data sets on natural (as 363 

opposed to experimental) communities. Experimentally-constructed communities are likely to have 364 

unnaturally few zeros, because experimenters typically introduce fewer species than encountered in 365 

nature. 366 

Intensity of dust bunny distributions is driven both by population processes and properties of a 367 

sample. For example, when sampling within a given ecological domain, dust bunny intensity will depend 368 

on sample unit size (e.g. area or volume). Consider two extremes: infinitesimally small (point) sample 369 

units, and very large sample units that span multiple environments. If sample units are literally points in 370 

space, then only one species can occupy a point at a given time, and each sample unit will contain at most 371 
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one species. Geometrically, this means that in a p-dimensional species space, the point lies on a p-1 372 

dimensional edge of that space. After removing empty sample units, the DBI, percentage of zeros and 373 

beta diversity will be maximal. 374 

On the contrary, if sample units are large, spanning substantial portions of major environmental 375 

gradients, then the length and steepness of the gradients are effectively diminished, beta diversity will 376 

decrease, and apparent niches will be broader. We have seen that reducing the environmental gradients in 377 

a data set will decrease the intensity of dust bunnies.  378 

Community samples taken across multiple simultaneous strong environmental gradients are likely 379 

to show strong dust bunnies, regardless of the successional state, niche width of the component species, 380 

and degree of dispersal limitation. In our experience, most community data sets have multiple strong 381 

abiotic or biotic environmental influences, therefore strong dust bunnies are the norm in community 382 

ecology. 383 

In conclusion, departure from multivariate normality toward the dust bunny distribution, 384 

characterized by community sample points lying along high-dimensional edges of multidimensional 385 

species space, can be predicted by population processes. Mechanisms that create this distribution include 386 

species’ differential responses along multiple environmental gradients, stochasticity of dispersal 387 

limitation, time since disturbance, and ecological niche width of species. As usual it is difficult to infer 388 

process from pattern because often a pattern can be produced by more than one process. Because of this, 389 

observing a strong dust bunny does not allow us to infer which processes are acting on the community. 390 

We can, however, infer in the opposite direction: knowledge of population processes and sample 391 

characteristics allow us to anticipate the intensity of dust bunnies in our data. Furthermore, broader 392 

recognition of the dust bunny distribution should help us to choose analytical methods.393 
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Table 1 Sensitivity of strength of dust bunny distributions to variation in dispersal limitation, niche width, 

number of environmental gradients, and number of generations since community-replacing disturbance. 

All combinations of levels of the model inputs were applied; "Incr" is the increment between levels. 

Sensitivities, Q, of the dust bunny indices were calculated by nudging the model variables for each data 

point, one variable at a time, then expressing the range in response relative to the amount nudged (Online 

Resource 1). Q=1 means that response variable (strength of dust bunny distribution) changes by an 

amount equal to the amount that the input variable was nudged. Q=0 means no response of DBI to the 

input variable. Dust bunny intensity (DBI) is based on the matrix mean of log-transformed abundances 

relativized by species maximum. 

      Sensitivity, Q 

Model inputs Units Symbol Min Max Incr. % zeros DBI 

Dispersal limitation, slope of 

Poisson parameter vs. 

competitive ability 

unitless d 1 20 1 0.324 0.324 

Niche width, environmental 

gradients 

standard 

deviates  

s 15 50 5 0.080 0.080 

Number of environmental 

gradients  

count q 0 3 1 6.720 5.872 

Number of generations count tmax 1 10 1 0.183 0.136 
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FIGURE LEGENDS – MCCUNE AND ROOT 

Fig 1. The dust bunny distribution in ecological community data, illustrated with a simple hypothetical 

data set where abundances of three species form a series of unimodal distributions along a single 

environmental gradient (upper left). In species space (lower right), where each species' abundance defines 

an axis, the data form a dust bunny distribution, shown here with three levels of abstraction. Background: 

a dust bunny in the vernacular, an accumulation of lint and dirt particles in the corner of a room. Middle: 

sample units (dots) in 3D species space. Abundances of species 1 and 3 peak on the extremes of the 

gradient. Species 2 peaks in the middle of the gradient. Foreground: The underlying environmental 

gradient forms a strongly nonlinear shape in species space (adapted from McCune and Grace 2002). 
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Fig 2 Comparison of ten real data sets (black dots; sources and characteristics: see Online Resource 2) 

with 19,200 simulated data sets (gray circles) for two measures of the departure of a dust bunny 

distribution from multivariate normality. Percent zeros in the species matrix vs. dust bunny intensity 

(DBI) based on raw data values (left panel) and log transformed species abundances (right panel). 

Expected values for multivariate normal and lognormal distributions are shown by +. Real data sets 

falling below the cloud of simulated data sets had raw data values consisting of averages rather than 

individual observations. 
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Fig. 3. Response surfaces from simulated data sets showing the dependence of dust bunny strength (DBI) 

on the three strongest controlling factors, number of environmental gradients dispersal limitation, d, and 

number of generations (or time steps). A. zero environmental gradients. B. one gradient. C. Two 

gradients. D Three gradients. These factors push community samples from multivariate normal 

distribution toward a dust bunny distribution. All response surfaces are for a constant niche width, s = 25. 
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Fig 4 Dependence of dust bunny intensity (DBI) on the weakest controlling factor, niche width, for each 

number of environmental gradients. The other important variables were held constant at moderate values 

(number of generations = 3, dispersal limitation = 3).  

 
 

 
 

 




