81 research outputs found
Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients
The interstellar medium of the Milky Way is multi-phase, magnetized and
turbulent. Turbulence in the interstellar medium produces a global cascade of
random gas motions, spanning scales ranging from 100 parsecs to 1000
kilometres. Fundamental parameters of interstellar turbulence such as the sonic
Mach number (the speed of sound) have been difficult to determine because
observations have lacked the sensitivity and resolution to directly image the
small-scale structure associated with turbulent motion. Observations of linear
polarization and Faraday rotation in radio emission from the Milky Way have
identified unusual polarized structures that often have no counterparts in the
total radiation intensity or at other wavelengths, and whose physical
significance has been unclear. Here we report that the gradient of the Stokes
vector (Q,U), where Q and U are parameters describing the polarization state of
radiation, provides an image of magnetized turbulence in diffuse ionized gas,
manifested as a complex filamentary web of discontinuities in gas density and
magnetic field. Through comparison with simulations, we demonstrate that
turbulence in the warm ionized medium has a relatively low sonic Mach number,
M_s <~ 2. The development of statistical tools for the analysis of polarization
gradients will allow accurate determinations of the Mach number, Reynolds
number and magnetic field strength in interstellar turbulence over a wide range
of conditions.Comment: 5 pages, 3 figures, published in Nature on 13 Oct 201
Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus
Animal movement influences the spatial spread of directly transmitted wildlife disease through host-host contact structure. Wildlife disease hosts vary in home range- associated foraging and social behaviours, which may increase the spread and intensity of disease outbreaks. The consequences of variation in host home range movement and space use on wildlife disease dynamics are poorly understood, but could help to predict disease spread and determine more effective disease management strategies. We developed a spatially explicit individual-based model to examine the effect of spatiotemporal variation in host home range size on the spatial spread rate, persistence and incidence of rabies virus (RABV) in raccoons (Procyon lotor). We tested the hypothesis that variation in home range size increases RABV spread and decreases vaccination effectiveness in host populations following pathogen invasion into a vaccination zone. We simulated raccoon demography and RABV dynamics across a range of magnitudes and variances in weekly home range size for raccoons. We examined how variable home range size influenced the relative effectiveness of three components of oral rabies vaccination (ORV) programmes targeting raccoonsâtiming and frequency of bait delivery, width of the ORV zone and proportion of hosts immunized. Variability in weekly home range size increased RABV spread rates by 1.2-fold to 5.2-fold compared to simulations that assumed a fixed home range size. More variable host home range sizes decreased relative vaccination effectiveness by 71% compared to less variable host home range sizes under conventional vaccination conditions. We found that vaccination timing was more influential for vaccination effectiveness than vaccination frequency or vaccination zone width. Our results suggest that variation in wildlife home range movement behaviour increases the spatial spread and incidence of RABV. Our vaccination results underscore the importance of prioritizing individual-level space use and movement data collection to understand wildlife disease dynamics and plan their effective control and elimination
Accounting for animal movement improves vaccination strategies against wildlife disease in heterogeneous landscapes
Oral baiting is used to deliver vaccines to wildlife to prevent, control, and eliminate infectious diseases. A central challenge is how to spatially distribute baits to maximize encounters by target animal populations, particularly in urban and suburban areas where wildlife such as raccoons (Procyon lotor) are abundant and baits are delivered along roads. Methods from movement ecology that quantify movement and habitat selection could help to optimize baiting strategies by more effectively targeting wildlife populations across space. We developed a spatially explicit, individual-based model of raccoon movement and oral rabies vaccine seroconversion to examine whether and when baiting strategies that match raccoon movement patterns perform better than currently used baiting strategies in an oral rabies vaccination zone in greater Burlington, Vermont, USA. Habitat selection patterns estimated from locally radio-collared raccoons were used to parameterize movement simulations. We then used our simulations to estimate raccoon population rabies seroprevalence under currently used baiting strategies (actual baiting) relative to habitat selection-based baiting strategies (habitat baiting). We conducted simulations on the Burlington landscape and artificial landscapes that varied in heterogeneity relative to Burlington in the proportion and patch size of preferred habitats. We found that the benefits of habitat baiting strongly depended on the magnitude and variability of raccoon habitat selection and the degree of landscape heterogeneity within the baiting area. Habitat baiting improved seroprevalence over actual baiting for raccoons characterized as habitat specialists but not for raccoons that displayed weak habitat selection similar to radiocollared individuals, except when baits were delivered off roads where preferred habitat coverage and complexity was more pronounced. In contrast, in artificial landscapes with either more strongly juxtaposed favored habitats and/or higher proportions of favored habitats, habitat baiting performed better than actual baiting, even when raccoons displayed weak habitat preferences and where baiting was constrained to roads. Our results suggest that habitat selection-based baiting could increase raccoon population seroprevalence in urbanâsuburban areas, where practical, given the heterogeneity and availability of preferred habitat types in those areas. Our novel simulation approach provides a flexible framework to test alternative baiting strategies in multiclass landscapes to optimize bait-distribution strategies
Cold gas outflows from the Small Magellanic Cloud traced with ASKAP
Feedback from massive stars plays a critical role in the evolution of the
Universe by driving powerful outflows from galaxies that enrich the
intergalactic medium and regulate star formation. An important source of
outflows may be the most numerous galaxies in the Universe: dwarf galaxies.
With small gravitational potential wells, these galaxies easily lose their
star-forming material in the presence of intense stellar feedback. Here, we
show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic
hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming
bar of the galaxy. The outflows are cold, , and may have formed
during a period of active star formation million years (Myr) ago. The
total mass of atomic gas in the outflow is solar masses, , or % of the total atomic gas of the galaxy. The inferred
mass flux in atomic gas alone, , is up to an order of magnitude greater than the star
formation rate. We suggest that most of the observed outflow will be stripped
from the SMC through its interaction with its companion, the Large Magellanic
Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen
encircling the Milky Way.Comment: Published in Nature Astronomy, 29 October 2018,
http://dx.doi.org/10.1038/s41550-018-0608-
On the dynamics of the Small Magellanic Cloud through high-resolution ASKAP HI observations
We use new high-resolution HâI data from the Australian Square Kilometre Array Pathfinder to investigate the dynamics of the Small Magellanic Cloud (SMC). We model the HâI gas component as a rotating disc of non-negligible angular size, moving into the plane of the sky, and undergoing nutation/precession motions. We derive a high-resolution (âŒ10 pc) rotation curve of the SMC out to RâŒ4kpcâ . After correcting for asymmetric drift, the circular velocity slowly rises to a maximum value of Vcâ55kmsâ1 at Râ2.8kpc and possibly flattens outwards. In spite of the SMC undergoing strong gravitational interactions with its neighbours, its HâI rotation curve is akin to that of many isolated gas-rich dwarf galaxies. We decompose the rotation curve and explore different dynamical models to deal with the unknown 3D shape of the mass components (gas, stars, and dark matter). We find that, for reasonable mass-to-light ratios, a dominant dark matter halo with mass MDM(R<4kpc)â1â1.5Ă109Mâ is always required to successfully reproduce the observed rotation curve, implying a large baryon fraction of 30 per centâ40 per centâ . We discuss the impact of our assumptions and the limitations of deriving the SMC kinematics and dynamics from HâI observations.EDT and NM-G acknowledge the support of the Australian Research Council (ARC) through grant DP160100723. NM-G acknowledges the support of the ARC through Future Fellowship FT150100024
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
- âŠ