43 research outputs found

    Functional response of the euphausiid Thysanoessa raschii grazing on small diatoms and toxic dinoflagellates

    Get PDF
    The functional response of T. raschii feeding on monocultures of small phytoplankton at 0.4–14 μg pigment liter–1 was determined using a time-series method in a large volume flow-through grazing system. A model-free robust regression procedure aided by graphical and statistical methods was used to compare Ivlev, Michaelis-Menten, linear, Disk equation and Holling type III models. Ivlev, Michaelis-Menten and Disk equation models were less preferable to a linear model because their parameters were highly correlated and could not be uniquely determined, although they appear to fit the data graphically. Holling type III model did not fit the data. A linear model both matched the model-free robust regression, and avoided problems of correlated parameters. No feeding threshold was detectable for the range of concentrations examined. T. raschii ingested the diatom Chaetoceros gracilis and both toxic and nontoxic clones of the dinoflagellate Gonyaulax tamarensis at the same rate at low concentrations (0.4–1.6 μg pigment liter–1)

    Predatory interactions and niche overlap between mako shark, Isurus oxyrinchus, and jumbo squid, Dosidicus gigas, in the California Current

    Get PDF

    Effect of environmental conditions on the distribution of Pacific mackerel (Scomber japonicus) larvae in the California Current system

    Get PDF
    We modeled the probability of capturing Pacif ic mackerel (Scomber japonicus) larvae as a function of environmental variables for the Southern California Bight (SCB) most years from 1951 through 2008 and Mexican waters offshore of Baja California from 1951 through 1984. The model exhibited acceptable fit, as indicated by the area under a receiver-operating-characteristic curve of 0.80 but was inconsistent with the zero catches that occurred frequently in the 2000s. Two types of spawners overlapped spatially within the survey area: those that exhibited peak spawning during April in the SCB at about 15.5°C and a smaller group that exhibited peak spawning in August near Punta Eugenia, Mexico, at 20°C or greater. The SCB generally had greater zooplankton than Mexican waters but less appropriate (lower) geostrophic f lows. Mexican waters generally exhibited greater predicted habitat quality than the SCB in cold years. Predicted quality of the habitat in the SCB was greater from the 1980s to 2008 than in the earlier years of the survey primarily because temperatures and geostrophic flows were more appropriate for larvae. However, stock size the previous year had a larger effect on predictions than any environmental variable, indicating that larval Pacific mackerel did not fully occupy the suitable habitat during most years

    Loggerhead Turtles (Caretta caretta) in the California Current: Abundance, Distribution, and Anomalous Warming of the North Pacific

    Get PDF
    Environmental variability affects distributions of marine predators in time and space. With expected changes in the ocean climate, understanding the relationship between species distributions and the environment is essential for developing successful management regulations. Here we provide information on an ephemeral but important habitat for North Pacific loggerhead turtles (Caretta caretta) at the northeastern edge of their range. North Pacific loggerhead turtles nest on Japanese beaches and juveniles disperse throughout the North Pacific; some remain in the high seas of the central North Pacific whereas others transition to the eastern Pacific and forage near Baja California, Mexico. Loggerheads have also been reported along the United States west coast, with the majority of sightings off southern California. Here we describe their demography and distribution in the area, based on two aerial surveys (2011, 2015), at-sea sightings, and stranding records. Our aerial survey during fall 2015 determined density, abundance, and distribution of loggerheads in the area, when anomalous warming of the North Pacific and El Niño conditions co-occurred. Using line-transect analysis, we estimated ca. 15,000 loggerheads at the sea surface (CV = 21%) and more than 70,000 loggerheads when accounting for those that were submerged and not available for detection. Our survey during fall 2011 resulted in no loggerhead sightings, demonstrating a high variability of loggerhead density in the region. We encourage further research on loggerheads in the area to determine the mechanisms that promote their occurrence. These studies should include regular surveys throughout their foraging areas along the west coast of the North America as well as assessments of prey availability and local oceanographic conditions

    Biophysical Factors Affecting the Distribution of Demersal Fish around the Head of a Submarine Canyon Off the Bonney Coast, South Australia

    Get PDF
    We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth)

    Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve

    Get PDF
    To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world
    corecore