California Cooperative Oceanic Fisheries Investigations (CalCOFI)
Abstract
This report reviews the state of the California Current System (CCS) between winter 2012 and spring 2013, and includes observations from Washington State to Baja California. During 2012, large-scale climate modes indicated the CCS remained in a cool, productive phase present since 2007. The upwelling season was delayed north of 42˚N, but regions to the south, especially 33˚ to 36˚N, experienced average to above average upwelling that persisted throughout the summer. Contrary to the indication of high production suggested by the climate indices, chlorophyll observed from surveys
and remote sensing was below average along much of
the coast. As well, some members of the forage assemblages
along the coast experienced low abundances in
2012 surveys. Specifically, the concentrations of all lifestages
observed directly or from egg densities of Pacific
sardine, Sardinops sagax, and northern anchovy, Engraulis
mordax, were less than previous years’ survey estimates.
However, 2013 surveys and observations indicate an
increase in abundance of northern anchovy. During winter
2011/2012, the increased presence of northern copepod
species off northern California was consistent with
stronger southward transport. Krill and small-fraction
zooplankton abundances, where examined, were generally
above average. North of 42˚N, salps returned to
typical abundances in 2012 after greater observed concentrations
in 2010 and 2011. In contrast, salp abundance
off central and southern California increased after a
period of southward transport during winter 2011/2012.
Reproductive success of piscivorous Brandt’s cormorant,
Phalacrocorax penicillatus, was reduced while planktivorous
Cassin’s auklet, Ptychoramphus aleuticus was elevated.
Differences between the productivity of these two seabirds
may be related to the available forage assemblage observed in the surveys. California sea lion pups from
San Miguel Island were undernourished resulting in a
pup mortality event perhaps in response to changes in
forage availability. Limited biological data were available
for spring 2013, but strong winter upwelling coastwide
indicated an early spring transition, with the strong
upwelling persisting into early summer