850 research outputs found

    The Ethical Odyssey in Testing HIV Treatment as Prevention

    Get PDF
    Obtaining the definitive data necessary to determine the safety and efficacy of using antiretroviral treatment (ART) to reduce the sexual transmission of HIV in heterosexual couples encountered an array of ethical challenges that threatened to compromise HPTN 052, the multinational clinical trial addressing this issue that has profound public health implications

    Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines

    Get PDF
    HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, these individuals have chronic inflammation associated with heightened risk of cardiovascular pathology. HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Though the majority of proviruses that persist during antiviral therapy are defective for production of infectious virions, many are expressed, raising the possibility that the HIV-1 provirus or its transcripts contribute to ongoing inflammation. Here we found that the HIV-1 provirus activated innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation required transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev was provided in trans, all HIV-1 coding sequences were dispensable for activation except those cis-acting sequences required for replication or splicing. These results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens

    Primate immunodeficiency virus Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex [preprint]

    Get PDF
    Drugs that inhibit HIV-1 replication and prevent progression to AIDS do not eliminate HIV-1 proviruses from the chromosomes of long-lived CD4+ memory T cells. To escape eradication by these antiviral drugs, or by the host immune system, HIV-1 exploits poorly defined host factors that silence provirus transcription. These same factors, though, must be overcome by all retroviruses, including HIV-1 and other primate immunodeficiency viruses, in order to activate provirus transcription and produce new virus. Here we show that Vpx and Vpr, proteins from a wide range of primate immunodeficiency viruses, activate provirus transcription in human CD4+ T cells. Provirus activation required the DCAF1 adaptor that links Vpx and Vpr to the CUL4A/B ubiquitin ligase complex, but did not require degradation of SAMHD1, a well-characterized target of Vpx and Vpr. A loss-of-function screen for transcription silencing factors that mimic the effect of Vpx on provirus silencing identified all components of the Human Silencing Hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN), and MORC2. Vpx associated with the HUSH complex components and decreased steady-state levels of these proteins in a DCAF-dependent manner. Finally, vpx and FAM208A knockdown accelerated HIV-1 and SIVMAC replication kinetics in CD4+ T cells to a similar extent, and HIV-2 replication required either vpx or FAM208A disruption. These results demonstrate that the HUSH complex restricts transcription of primate immunodeficiency viruses and thereby contributes to provirus latency. To counteract this restriction and activate provirus expression, primate immunodeficiency viruses encode Vpx and Vpr proteins that degrade HUSH complex components

    Lv4 Is a Capsid-Specific Antiviral Activity in Human Blood Cells That Restricts Viruses of the SIVMAC/SIVSM/HIV-2 Lineage Prior to Integration

    Get PDF
    HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-species transmission events such as these sometimes necessitate virus adaptation to species-specific, host restriction factors such as TRIM5. Here, a new human restriction activity is described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to \u3e 100-fold less transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast, transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1 CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of the respective vectors. Among such CA chimeras there was a general trend such that CAs from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA from a 1 degrees sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonetheless, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction activity in the latter. These results suggest that the nucleus of human blood cells possesses a restriction factor specific for the CA of HIV-2/SIVMAC/SIVSM and that cross-species transmission of SIVSM to human T cells necessitated adaptation of HIV-2 to this putative restriction factor

    Humanized Mice for the Generation of HIV-1 Human Monoclonal Antibodies

    Get PDF
    Background: Despite the length of time HIV has been wreaking havoc on its victims, improvements in the prevention and treatment of HIV are needed. Anti-retroviral therapy can be effective but is expensive and not entirely accessible for people infected in third world countries. Several promising broadly neutralizing antibodies have been isolated from infected individuals; we propose that generating antigen specific human monoclonal antibodies using humanized mice further represents a promising approach to engineer prophylactic antibodies to reduce spread and infection of HIV. Methods: Immunodeficient mice were engrafted with fetal liver and thymus (BLT) prior to infection with different HIV isolates. HIV infection of the mice was monitored by viral load and antibody response followed by ELISA using gp120, gp41 or gp120/CD4 complex as antigens. Approximately 8-12 weeks post infection, spleens were harvested and splenocytes fused with human fusion partner HMMA 2.5 to isolate antibody-expressing hybridomas. Lead clones were scaled and purified for testing in functional assays such as TZM-bl neutralization assays as well as ADCVI to determine neutralizing and cytotoxic ability of the antibodies. Antibody sequences were also determined for analysis. Results: A robust, specific antibody response, of both IgG and IgA isotypes, was generated in response to HIV infection. Over 60 hybridomas were created that were not only immunoreactive with env antigens, but also had neutralization activity. Moreover, variable family usage was not limited and somatic mutation was clearly evident. Conclusions: These findings suggest that humanized BLT mice are a novel source for well-characterized, stable human monoclonal antibodies to HIV

    Discovery and Development of Human Monoclonal Antibodies to Block RhD Alloimmunization During Pregnancy

    Get PDF
    Exposure of an Rh negative mother to red blood cells (RBCs) of an Rh positive fetus results in alloimmunization and development of anti-RhD antibodies. The anti-RhD antibodies cause hemolytic disease of the new born babies during subsequent pregnancies. Current prophylactic treatment involves polyclonal anti-RhD IgG purified from plasma of humans and is administered in approximately 20% of pregnancies. While the current prophylaxis is effective, it involves the use of human plasma and non-RhD specific antibodies, thus posing a risk of transmitting infections and undesired antibody reactions. Moreover, there is a serious scarcity of plasma donors to meet the requirement of anti-RhD antibodies. In this study we propose to discover and develop anti-RhD monoclonal human antibodies to replace the current polyclonal prophylaxis. We are using humanized BLT mice (fetal CD34+ stem cells, liver and thymus) reconstituted with RhD negative donor material and were immunized by using adenovirus containing RhD transgene. Serum samples were collected after 4-6 weeks of immunization. Our results show that the RhD immunized mice had considerably higher titer of IgG and IgA antibodies in the serum compared to the control, suggesting an immune response developed upon immunization. Splenocytes from antibody producing mice will be fused with a human fusion partner for the isolation of hybridomas producing human monoclonal antibodies. The immunoreactivity and functional activity of these antibodies will be discussed

    What will the cardiovascular disease slowdown cost? Modelling the impact of CVD trends on dementia, disability, and economic costs in England and Wales from 2020–2029

    Get PDF
    Publisher Copyright: © 2022 Collins et al.Background There is uncertainty around the health impact and economic costs of the recent slowing of the historical decline in cardiovascular disease (CVD) incidence and the future impact on dementia and disability. Methods Previously validated IMPACT Better Ageing Markov model for England and Wales, integrating English Longitudinal Study of Ageing (ELSA) data for 17,906 ELSA participants followed from 1998 to 2012, linked to NHS Hospital Episode Statistics. Counterfactual design comparing two scenarios: Scenario 1. CVD Plateau—age-specific CVD incidence remains at 2011 levels, thus continuing recent trends. Scenario 2. CVD Fall—age-specific CVD incidence goes on declining, following longer-term trends. The main outcome measures were age-related healthcare costs, social care costs, opportunity costs of informal care, and quality adjusted life years (valued at £60,000 per QALY). Findings The total 10 year cumulative incremental net monetary cost associated with a persistent plateauing of CVD would be approximately £54 billion (95% uncertainty interval £14.3-£96.2 billion), made up of some £13 billion (£8.8-£16.7 billion) healthcare costs, £1.5 billion (-£0.9-£4.0 billion) social care costs, £8 billion (£3.4-£12.8 billion) informal care and £32 billion (£0.3-£67.6 billion) value of lost QALYs. Interpretation After previous, dramatic falls, CVD incidence has recently plateaued. That slowdown could substantially increase health and social care costs over the next ten years. Healthcare costs are likely to increase more than social care costs in absolute terms, but social care costs will increase more in relative terms. Given the links between COVID-19 and cardiovascular health, effective cardiovascular prevention policies need to be revitalised urgently.Peer reviewe

    HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded

    Get PDF
    HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities. IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV\u27s envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    • …
    corecore