6,845 research outputs found

    Phototransistor

    Get PDF
    A phototransistor is described in which there is included as a part of its integral structure an auxiliary diode in the form of an added base-collector junction. This junction is formed in the surface of the base element and thus out of the direct path between the emitter and collector regions of the phototransistor

    Overlap diffusion for increasing phototransistor dynamic range

    Get PDF
    Construction of improved phototransistors to provide increased base-collector capacitance is described. Silicon or germanium semiconductor wafers are used as examples. Operation of transistors and electrical properties are discussed and illustrations of the devices are included

    Time delay and integration detectors using charge transfer devices

    Get PDF
    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates

    Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    Get PDF
    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb+^{+} ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole interaction and the second-order spin-orbit coupling can play important roles, inducing couplingbetween the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately 5 orders of magnitude higher than the charge-exchange collision rate \cite{kohl13}. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol. Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114

    A Mathematical Analysis of the Subsidence in the Long Beach - San Pedro Area

    Get PDF
    This report presents the significant results from a mathematical study of the subsidence in the Long Beach area. The work, begun in December 1949 at the request of Mr. M.D. Hughes, Chief Petroleum Engineer, the Petroleum Division of the Long Beach Harbor Department, has been in progress for two years. During this period a large volume of physical data pertinent to the subsidence phenomena has been made available and analyzed. Additional tests suggested by the mathematical analysis have been instigated by the Petroleum Division so that a well integrated program of research has been brought to bear upon this problem

    Strong-field approximation for Coulomb explosion of H_2^+ by short intense laser pulses

    Full text link
    We present a simple quantum mechanical model to describe Coulomb explosion of H2+_2^+ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter than 50 fs where the process of dissociation prior to ionization is negligible. The results are compared with recent experimental results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett. 95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The predictions of the model reproduce the profile of the spectrum although the peak energy is slightly lower than the observations. For comparison, we also present results obtained by two different tunneling models for this process.Comment: 8 pages, 4 figure

    Application of the California Institute of Technology Electric Analog Computer to Nonlinear Mechanics and Servomechanisms

    Get PDF
    This paper describes the non-linear elements and circuit techniques used with the California Institute of Technology electric analog computer. Their application to nonlinear mechanical vibratory systems and nonlinear servomotors is discussed in detail. These techniques have been found to be generally suitable for representing single valued nonlinear functions of a dependent variable. Nonlinear springs, spring loaded backlash, and nonlinear damping factors can be readily simulated as well as saturation effects and other single valued non-linearities in servomotors. Methods of analysis are illustrated for several typical problems including a nonlinear rotating mechanical system and an autopilot employing a solenoid-operated rate and position limited hydraulic motor. Numerous servos of this type have now been studied and correlation of computer solutions with actual servo test data have shown in every case that the mathematical equations presented here accurately describe this type of motor

    Dielectric-Recovery Characteristic of Power Arcs in Large Air Gaps

    Get PDF
    A satisfactory test technique has been developed for studying the rates of dielectric recovery of large air gaps and other types of power-system insulation. This permits the accurate control of the fault conditions so that all practical types of fault currents can be studied. These are: (1) very high magnitude short-duration surges typical of lightning currents; (2) currents of power-system frequencies; and (3) intermediate duration currents such as those which might result from high-frequency current zeros produced by natural system oscillations. Results are presented showing the rate of dielectric recovery of 3-, 6-, and 11-inch standard rod gaps for power frequency fault currents up to 700 amperes. Electrode cooling effects were found important at 3-inch gap spacings but not at six inches or above. The 11-inch gap data are proportionately higher than the 6-inch data indicating that the results can be extrapolated. The data show that for arcs of a few cycles actual duration has little effect on rate of recovery. A range of current magnitudes from 50 to 700 amperes causes only about a 2-to-1 variation in rate of recovery. For the normal ratios of transmission-line insulation level to operating voltage (about four to one) minimum delay times of from 0.025 second for 100-ampere faults to 0.05 second for 700 ampere faults are required before the recovery voltage reaches the magnitude of the normal applied voltage. Time intervals of 0.05 to 0

    From clean to diffusive mesoscopic systems: A semiclassical approach to the magnetic susceptibility

    Full text link
    We study disorder-induced spectral correlations and their effect on the magnetic susceptibility of mesoscopic quantum systems in the non-diffusive regime. By combining a diagrammatic perturbative approach with semiclassical techniques we perform impurity averaging for non-translational invariant systems. This allows us to study the crossover from clean to diffusive systems. As an application we consider the susceptibility of non-interacting electrons in a ballistic microstructure in the presence of weak disorder. We present numerical results for a square billiard and approximate analytic results for generic chaotic geometries. We show that for the elastic mean free path â„“\ell larger than the system size, there are two distinct regimes of behaviour depending on the relative magnitudes of â„“\ell and an inelastic scattering length.Comment: 7 pages, Latex-type, EuroMacr, 4 Postscript figures, to appear in Europhys. Lett. 199

    Electronic Techniques Applied to Analogue Methods of Computation

    Get PDF
    This paper describes in detail the electronic devices and principles that have been developed for the California Institute of Technology (CIT) electric analogue computer. This is a general-purpose, large-scale computer applicable to a wide range of linear and nonlinear ordinary algebraic or differential equations and linear and nonlinear partial differential equations. In addition to the basic principles of the computer, a detailed discussion is given of those elements considered to be of particular interest. These include the devices for generating the arbitrary functions of the independent variable (the excitation functions), the amplifiers for producing active linear elements such as negative impedances and for representing the nonsymmetrical terms of the matrix specifying the differential equations, the multipliers for producing arbitrary functions of the dependent variables (nonlinear elements). Performance data on these devices are presented, together with analogies and solutions of representative types of problems
    • …
    corecore