602 research outputs found

    Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development. Li et al. report a hierarchical process mediated by Neuroligin 2 and Slitrk3 for GABAergic synapse development. Neuroligin 2 also interacts with Slitrk3 to regulate GABAergic synaptogenesis. Selective perturbation of this interaction decreases GABAergic synaptic transmission and impairs hippocampal network activities.NIH/NINDS Intramural Research ProgramNIH/NICHD Intramural Research ProgramNIH/NEI Intramural Research Progra

    A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly

    Get PDF
    Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted
    • …
    corecore