938 research outputs found
A Multidimensional Analysis of Climate Projections on the Great Barrier Reef
Tropical coral reefs are increasingly threatened due to global warming. Corals live within a narrow thermal threshold making them one of the most sensitive species to changes in temperature. Recent warming events on the Great Barrier Reef (GBR) (2016, 2017, 2020) have caused mass coral mortality on approximately 30% of the reef (Bozec et al., 2020; Hughes, Kerry et al., 2018). This research focuses on the development and implementation of a 1-D semi-dynamic downscaling method to improve climate projections on the GBR. Coral stress metrics are used to provide detailed projections on the magnitude and frequency of warming for four socio-economic pathways (SSP) under the 6th phase of the Climate Model Intercomparison Project. Following a chapter on methods and model validation, the results in chapter 3 reveal the importance of adhering to the lowest possible emissions trajectory which limits warming to 1.5°C by the end of the century. This scenario keeps projected warming to slightly above current conditions. Under the higher emissions trajectories (~4°C and ~5°C of global average warming) coral stress metrics quadruple present-day warming conditions which would result in annual mass coral mortality events by 2080. In chapter 4, climate refugia have been identified from present-day conditions based on downscaled surface temperature outputs in agreement with observations. The lower emissions trajectories maintain these locations as refugia while the higher emissions trajectories reveal the loss of these increasingly valuable locations. Areas of climate refugia can be attributed to tidal and wind energy fluctuations providing relief from warming. However, this advantage does not persist after global warming exceeds ~3°C. Refugia are more likely to persist in the northern GBR under increased warming even though recent evidence suggests there are fewer refugia in this region. Atmospheric spatial patterns on the GBR under warming above ~3° C reveal a change in wind and shortwave radiation patterns driving a loss in the identified climate refugia locations. Lastly, stratification was tested in chapter 5 to determine if increases in stratification could provide thermal relief to bottom temperature waters from 0-50 m under increased warming into the future using downscaled bottom temperature projections. Chapter 5 results demonstrate that warming influences bottom temperatures of stratified locations, showing little support for deeper reefs to act as a climate refuge. The temporal, spatial, and bottom temperature analysis of downscaled climate projections provides insight into the consequences of a warming planet for the GBR and can be used to inform management and policy decisions to protect coral reefs
Propeller propulsion integration, phase 1
A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality
Stochastic nonlinear differential equation generating 1/f noise
Starting from the simple point process model of 1/f noise we derive a
stochastic nonlinear differential equation for the signal exhibiting 1/f noise
in any desirably wide range of frequency. A stochastic differential equation
(the general Langevin equation with a multiplicative noise) that gives 1/f
noise is derived for the first time. The solution of the equation exhibits the
power-law distribution. The process with 1/f noise is demonstrated by the
numerical solution of the derived equation with the appropriate restriction of
the diffusion of the signal in some finite interval.Comment: 3 figure
Recommended from our members
Intelligent Microsystems: Keys to the Next Silicon Revolution
Paul McWhorter, Deputy Director for of the Microsystems Center at Sandia National Laboratories, discusses the potential of surface micromachining. A vision of the possibilities of intelligent Microsystems for the future is presented along with descriptions of several possible applications. Applications that are just around the corner and some that maybe quite a ways down the road but have a clear development path to their realization. Microsystems will drive the next silicon revolution
Are Hummingbirds Facultatively Ammonotelic? Nitrogen Excretion and Requirements as a Function of Body Size
Most birds are uricotelic. An exception to this rule may be nectar-feeding birds, which excrete significant amounts of ammonia under certain conditions. Although ammonia is toxic, because it is highly water soluble its excretion may be facilitated in animals that ingest and excrete large amounts of water. Birdpollinated plants secrete carbohydrate- and water-rich floral nectars that contain exceedingly little protein. Thus, nectarfeeding birds are faced with the dual challenge of meeting nitrogen requirements while disposing of large amounts of water. The peculiar diet of nectar-feeding birds suggests two hypotheses: (1) these birds must have low protein requirements, and (2) when they ingest large quantities of water their primary nitrogen excretion product may be ammonia. To test these hypotheses, we measured maintenance nitrogen requirements (MNR) and total endogenous nitrogen losses (TENL) in three hummingbird species (Archilochus alexandri, Eugenes fulgens, and Lampornis clemenciae) fed on diets with varying sugar, protein, and water content. We also quantified the form in which the by-products of nitrogen metabolism were excreted. The MNR and TENL of the hummingbirds examined were exceptionally low. However, no birds excreted more than 50% of nitrogen as ammonia or more nitrogen as ammonia than urates. Furthermore, ammonia excretion was not influenced by either water or protein intake. The smallest species (A. alexandri) excreted a significantly greater proportion (125%) of their nitrogenous wastes as ammonia than the larger hummingbirds (≈4%). Our results support the hypothesis that nectar-feeding birds have low protein requirements but cast doubt on the notion that they are facultatively ammonotelic. Our data also hint at a possible size-dependent dichotomy in hummingbirds, with higher ammonia excretion in smaller species. Differences in proportionate water loads and/or postrenal modification of urine may explain this dichotomy
Risk of SARS-CoV-2 Transmission During Flexible Laryngoscopy: A Systematic Review.
IMPORTANCE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reportedly infected otolaryngologists disproportionately in the early parts of the coronavirus disease 2019 pandemic. Recommendations from national and international health organizations suggest minimizing the use of flexible laryngoscopy as a result.
OBJECTIVE: To review evidence on the risks of aerosolization and transmission of SARS-CoV-2 from patients to health care personnel during endoscopy of the upper aerodigestive tract.
EVIDENCE REVIEW: A comprehensive review of literature was performed on April 19, 2020, using the PubMed/MEDLINE (1966-April 2020), Embase (1975-April 2020), and Web of Science (1900-April 2020) databases. All English-language primary research studies were included if they assessed the transmission of SARS-CoV-2 or SARS-CoV-1 during procedures in the upper aerodigestive tract. The primary outcome measure was disease transmission among health care workers. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for accuracy of reporting.
FINDINGS: The queries for SARS-CoV-2 and SARS-CoV-1 identified 6 articles for systematic review. No studies included in this review provided data for SARS-CoV-2 transmission during flexible laryngoscopy. A total of 204 of 1264 health care workers (16.1%) had procedure-specific infections of SARS-CoV-1 or SARS-CoV-2. Among those, 53 of 221 (24.0%) were exposed during intubation, 1 of 15 (6.7%) during bronchoscopy, and 1 of 1 (100%) during endoscopy-assisted intubation.
CONCLUSIONS AND RELEVANCE: A substantial lack of research precludes formal conclusions about the safety of flexible laryngoscopy and transmission of SARS-CoV-2 from patients to health care workers. The use of appropriate precautionary measures and personal protective equipment appears to reduce the risk of transmission. Given the uncertainty in transmission and the known benefits of safety precautions, upper airway endoscopy may be reasonable to perform if precautionary steps are taken
- …