904 research outputs found

    Molecular evolution of the sheep prion protein gene

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) are infectious, fatal neurodegenerative diseases characterized by aggregates of modified forms of the prion protein (PrP) in the central nervous system. Well known examples include variant Creutzfeldt-Jakob Disease (vCJD) in humans, BSE in cattle, chronic wasting disease in deer and scrapie in sheep and goats. In humans, sheep and deer, disease susceptibility is determined by host genotype at the prion protein gene (PRNP). Here I examine the molecular evolution of PRNP in ruminants and show that variation in sheep appears to have been maintained by balancing selection, a profoundly different process from that seen in other ruminants. Scrapie eradication programs such as those recently implemented in the UK, USA and elsewhere are based on the assumption that PRNP is under positive selection in response to scrapie. If, as these data suggest, that assumption is wrong, eradication programs will disrupt this balancing selection, and may have a negative impact on the fitness or scrapie resistance of national flocks

    Are neonicotinoid insecticides driving declines of widespread butterflies?

    Get PDF
    There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture

    Gene-history correlation and population structure

    Full text link
    Correlation of gene histories in the human genome determines the patterns of genetic variation (haplotype structure) and is crucial to understanding genetic factors in common diseases. We derive closed analytical expressions for the correlation of gene histories in established demographic models for genetic evolution and show how to extend the analysis to more realistic (but more complicated) models of demographic structure. We identify two contributions to the correlation of gene histories in divergent populations: linkage disequilibrium, and differences in the demographic history of individuals in the sample. These two factors contribute to correlations at different length scales: the former at small, and the latter at large scales. We show that recent mixing events in divergent populations limit the range of correlations and compare our findings to empirical results on the correlation of gene histories in the human genome.Comment: Revised and extended version: 26 pages, 5 figures, 1 tabl

    Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data

    Get PDF
    The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long‐term patterns of gene flow between diverging species. Here, we used thousands of single‐nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two‐directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long‐term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago

    Population Stratification of a Common APOBEC Gene Deletion Polymorphism

    Get PDF
    The APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene. We developed a PCR-based genotyping assay, characterized 1,277 human diversity samples, and found that the frequency of the deletion allele varies significantly among major continental groups (global F (ST) = 0.2843). The deletion is rare in Africans and Europeans (frequency of 0.9% and 6%), more common in East Asians and Amerindians (36.9% and 57.7%), and almost fixed in Oceanic populations (92.9%). Despite a worldwide frequency of 22.5%, analysis of data from the International HapMap Project reveals that no single existing tag single nucleotide polymorphism may serve as a surrogate for the deletion variant, emphasizing that without careful analysis its phenotypic impact may be overlooked in association studies. Application of haplotype-based tests for selection revealed potential pitfalls in the direct application of existing methods to the analysis of genomic structural variation. These data emphasize the importance of directly genotyping structural variation in association studies and of accurately resolving variant breakpoints before proceeding with more detailed population-genetic analysis

    A Genealogical Interpretation of Principal Components Analysis

    Get PDF
    Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference

    How Many Subpopulations is Too Many? Exponential Lower Bounds for Inferring Population Histories

    Full text link
    Reconstruction of population histories is a central problem in population genetics. Existing coalescent-based methods, like the seminal work of Li and Durbin (Nature, 2011), attempt to solve this problem using sequence data but have no rigorous guarantees. Determining the amount of data needed to correctly reconstruct population histories is a major challenge. Using a variety of tools from information theory, the theory of extremal polynomials, and approximation theory, we prove new sharp information-theoretic lower bounds on the problem of reconstructing population structure -- the history of multiple subpopulations that merge, split and change sizes over time. Our lower bounds are exponential in the number of subpopulations, even when reconstructing recent histories. We demonstrate the sharpness of our lower bounds by providing algorithms for distinguishing and learning population histories with matching dependence on the number of subpopulations. Along the way and of independent interest, we essentially determine the optimal number of samples needed to learn an exponential mixture distribution information-theoretically, proving the upper bound by analyzing natural (and efficient) algorithms for this problem.Comment: 38 pages, Appeared in RECOMB 201

    Correction: Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum

    Get PDF
    Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes

    Associations between significant head injury in male juveniles in prison in Scotland UK and cognitive function, disability and crime: a cross sectional study

    Get PDF
    Background: Although the prevalence of head injury is estimated to be high in juveniles in prison, the extent of persisting disability is unknown and relationships with offending uncertain. This limited understanding makes it difficult to develop effective management strategies and interventions to improve health or reduce recidivism. This study investigates effects of significant head injury (SHI) on cognitive function, disability and offending in juvenile prisoners, and considers relationships with common comorbidities. Methods: This cross-sectional study recruited male juvenile prisoners in Scotland from Her Majesty’s Young Offenders Institute (HMYOI) Polmont (detaining approximately 305 of 310 male juveniles in prison in Scotland). To be included juveniles had to be 16 years or older, fluent in English, able to participate in assessment, provide informed consent and not have a severe acute disorder of cognition or communication. Head injury, cognition, disability, history of abuse, mental health and problematic substance use were assessed by interview and questionnaire. Results: We recruited 103 (34%) of 305 juvenile males in HMYOI Polmont. The sample was demographically representative of juvenile males in prisons for young offenders in Scotland. SHI was found in 82/103 (80%) and head injury repeated over long periods of time in 69/82 (85%). Disability was associated with SHI in 11/82 (13%) and was significantly associated with mental health problems, particularly anxiety. Group differences on cognitive tests were not found. However the SHI group reported poorer behavioural control on the Dysexecutive Questionnaire and were more often reported for incidents in prison than those without SHI. Characteristics of offending, including violence, did not differ between groups. Conclusions: Although SHI is highly prevalent in juvenile prisoners, associated disability was relatively uncommon. There was no evidence for differences in cognitive test performance or offending in juveniles with and without SHI. However, signs of poorer behavioural control and greater psychological distress in juveniles with SHI suggest that they may be at greater risk of recidivism and of potentially becoming lifelong offenders. This implies a need for remedial programmes for juvenile prisoners to take account of persisting effects of SHI on mental health and self-control and education and to improve their understanding of the effects of SHI reduce the likelihood of cumulative effects from further SHI
    corecore