28 research outputs found

    Animal models for aberrations of gonadotropin action

    Get PDF
    During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice

    Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-B- and p53-regulated gene targets

    No full text
    NOTE: THE SPECIAL CHARACTERS IN THIS ABSTRACT CANNOT BE DISPLAYED CORRECTLY. PLEASE REFER TO THE THE PUBLISHER'S WEBSITE FOR AN ACCURATE DISPLAY. The respective pro- and antiapoptotic functions of the transcription factors p53 and nuclear factor jB (NF-jB), and their potential impact on tumorigenesis and response to tumor therapy are well recognized. The capacity of the RelA(p65) subunit of NF-jB to specify a pro-apoptotic outcome in response to some stimuli is less well recognized, but needs to be understood if rational manipulation of the NF-jB pathway is to be deployed in cancer therapy. In this report, we provide evidence that the growth responsive nuclear protein, proenkephalin (Penk), is required, in part, for apoptosis induction, in response to activation ooverexpression of p53 and RelA(p65). We describe UV-C-inducible physical associations between endogenous Penk and p53 and RelA(p65) in mammalian cell lines. Depletion of Penk by RNA interference (RNAi) substantially preserves viable cell number following exposure to UV-C irradiation or hydrogen peroxide and confers transient protection in cells exposed to the genotoxin etoposide. In virally transformed and human tumor cell lines, overexpression of nuclear Penk with overabundant or activated p53, or RelA(p65) even in the absence of p53, enhances apoptosis to the point of synergy. We have further shown that Penk depletion by RNAi substantially derepresses transcription of a range of antiapoptotic gene targets previously implicated in repression-mediated apoptosis induction by NF-jB and p53. Physical association of endogenous Penk with the transcriptional co-repressor histone deacetylase suggests that it may be a component of a transcriptional repression complex that contributes to a pro-apoptotic outcome, following activation of the NF-jB and p53 pathways, and could therefore help to facilitate an antitumor response to a broad range of agents
    corecore