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Genome-wide analysis reveals the ancient and recent
admixture history of East African Shorthorn Zebu from
Western Kenya

MN Mbole-Kariuki1, T Sonstegard2, A Orth3, SM Thumbi4, BMdeC Bronsvoort5, H Kiara3, P Toye3,
I Conradie6, A Jennings5, K Coetzer6, MEJ Woolhouse4, O Hanotte1 and M Tapio7

The Kenyan East African zebu cattle are valuable and widely used genetic resources. Previous studies using microsatellite loci
revealed the complex history of these populations with the presence of taurine and zebu genetic backgrounds. Here, we
estimate at genome-wide level the genetic composition and population structure of the East African Shorthorn Zebu (EASZ) of
western Kenya. A total of 548 EASZ from 20 sub-locations were genotyped using the Illumina BovineSNP50 v. 1 beadchip.
STRUCTURE analysis reveals admixture with Asian zebu, African and European taurine cattle. The EASZ were separated into
three categories: substantial (X12.5%), moderate (1.56%oXo12.5%) and non-introgressed (p1.56%) according to the
European taurine genetic proportion. The non-European taurine introgressed animals (n¼425) show an unfluctuating zebu and
taurine ancestry of 0.84±0.009 s.d. and 0.16±0.009 s.d., respectively, with significant differences in African taurine (AT)
and Asian zebu backgrounds across chromosomes (Po0.0001). In contrast, no such differences are observed for the European
taurine ancestry (P¼0.1357). Excluding European introgressed animals, low and nonsignificant genetic differentiation and
isolation by distance are observed among sub-locations (Fst¼0.0033, P¼0.09; r¼0.155, P¼0.07). Following a short
population expansion, a major reduction in effective population size (Ne) is observed from approximately 240 years ago to
present time. Our results support ancient zebu�AT admixture in the EASZ population, subsequently shaped by selection and/or
genetic drift, followed by a more recent exotic European cattle introgression.
Heredity advance online publication, 16 April 2014; doi:10.1038/hdy.2014.31

INTRODUCTION

The East African cattle group is a valuable genetic resource with a
complex origin. The first African cattle were of taurine type Bos taurus
(Gifford-Gonzalez and Hanotte, 2011). According to latest mitochon-
drial DNA results they originated from the geographic center of cattle
domestication in the Near East and separated from the other taurine
types approximately 7000 years ago (Bonfiglio et al., 2012). These
taurine cattle entered Africa through its North-Eastern part via
present day Egypt (Epstein, 1971; Blench and MacDonald, 2000;
Gifford-Gonzalez and Hanotte, 2011). Zebu cattle (Bos indicus)
originated in the Indian subcontinent and migrated into Africa more
recently (Gifford-Gonzalez and Hanotte, 2011). The earliest undis-
puted evidences of zebu cattle dated from the first mid-millennium
AD (Gifford-Gonzalez and Hanotte, 2011). They may have subse-
quently penetrated Africa in two waves (Hanotte et al., 2002), with
the second wave possibly facilitated by the rinderpest epidemic
(Blench, 1993; Paynes and Hodges, 1997). Contemporary cattle from
the eastern part of Africa are predominantly phenotypically classified

as zebu (Rege and Tawah, 1999; DAGRIS, 2007). As to whether or
not the African aurochs B. primigenius africanus (now extinct)
contributed to the genetic stock of African domestic cattle remains
unknown (Gifford-Gonzalez and Hanotte, 2011).

Currently, Africa is home to over 150 recognized cattle breeds that
comprise of a mosaic of zebu, taurine and crossbreeds (indicine and
taurine), the latter sometimes referred to as sanga (Rege and Tawah,
1999). In Kenya, owing to the effect of tribal boundaries and
socioeconomic cultures, different strains of the East African Shorthorn
Zebu (EASZ) are recognized (Rege, 1999). These include the Kavir-
ondo zebu reared by the Luo and Luhya communities, and the Teso
zebu reared by the Teso community who mainly inhabit western Kenya
(DAGRIS, 2007). Genetic studies carried out using microsatellite
markers (Rege et al., 2001) show that Kenyan zebu populations are
zebu–taurine hybrids with a major zebu genetic component. Further
studies with Y-chromosomal markers (Hanotte et al., 2000) and
mitochondrial DNA markers (Bradley et al., 1996) are in agreement
with a male-mediated zebu introgression of the taurine animals.
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In more recent times, a wave of ‘exotic’ taurine cattle introductions
has set off following governmental and international livestock
development agendas aimed at improving livestock productivity
(Hanotte et al., 2002). These cattle are of European taurine genetic
backgrounds and include breeds such as Holstein–Friesian and Jersey
as reported in Kenya (Weir et al., 2009) and Ethiopia (Haile et al.,
2011). The rapidly changing socioeconomic and cultural environment
of rural farming is favoring these introductions. This shift of focus is
to a perceived economically beneficial animal as opposed to an
ecologically fit one, leading to active breed replacement or cross-
breeding programs within Eastern Africa, particularly in the highlands
and peri-urban areas (Bebe et al., 2003).

Today, indigenous zebu cattle are the commonest cattle type across
most parts of Eastern Africa (Rege and Tawah, 1999). Their wide
distribution is a possible consequence of their environmental adaptive
traits not found in exotic taurine breeds. These include resistance or
tolerance to tropical diseases and their vectors (Latif et al., 1991a, b;
Mattioli et al., 1993; Lawrence et al., 1996; Wambura et al., 1998;
Hanotte et al., 2003), survival on poor quality forages/pastures
(Bonsma, 1973; Turner, 1980) and thermal stress tolerance
(Carvalho et al., 1995; Hammond et al., 1996; Gaughan et al., 1999;
Hansen, 2004). In addition, African zebu cattle are still a reliable
source of draught power (Rege et al., 2001).

African taurine (AT) are on the verge of extinction in East Africa
(Rege, 1999), but their environmental genetic adaptation (for
example, infectious disease tolerance) may have survived in East
African zebu and their crossbreeds. However, despite being well
adapted to the harsh tropical environment, African zebu and taurine
cattle remain poor producers in comparison with exotic breeds raised
in the temperate environments (Rege et al., 2001). A medium to long-
term solution for sustainable improvement of productivity in the
tropics may be to combine ecologically adaptive zebu traits and
economically important exotic cattle traits in crossbreed animals.

The recent availability of genome-wide scan tools are offering new
opportunities for genetic characterization (Gautier et al., 2009, 2010;
McTavish et al., 2013), genome-wide association studies (Van Tassell
et al., 2008; Matukumalli et al., 2009; Settles et al., 2009; Pant et al.,
2010), the detection of signatures of selection for productivity
(Barendse et al., 2009) and genomic evaluation (Wiggans et al., 2008,
2010) of cattle populations. Most of these studies have been carried out
predominantly on European dairy and beef cattle breeds (The Bovine
HapMap Consortium, 2009; Melka and Schenkel, 2012) with the
exception of Gautier et al. (2009) and Gautier and Naves (2011) who
worked on West African and Caribbean Creole cattle, respectively.

In this study, we characterize at genome-wide level the genetic
diversity and architecture of 548 EASZ, an indigenous cattle popula-
tion from Kenya. We present evidences for ancient zebu� taurine
admixture, population bottleneck and expansion as well as the
presence of recent and ongoing exotic taurine introgression. No
significant genetic differentiation in non-European introgressed ani-
mals is observed across the studied sites. Moreover, our study further
provides insight in the usefulness and limitations of low-density single-
nucleotide polymorphisms (SNPs) chips toward understanding the
genomic architecture and history of indigenous African tropical cattle.

MATERIALS AND METHODS
Study cohort and sampling site
A total of 548 calves were sampled from 20 different randomly selected sub-

locations that traverse four distinct ecological zones in Western and Nyanza

provinces of Kenya (Supplementary Figure S1). Upon recruitment, blood

samples were drawn from the jugular vein using a 10 ml sterile syringe. Five ml

of blood was mixed in sodium EDTA tubes in a 1:1 ratio with ‘magic buffer’

(which acted as an anti-coagulant, anti-fungus, anti-bacterial and

preservative—Biogen Diagnostica, Villaviciosa De Odon, Spain). The tubes

were labeled with their respective bar-coded tags before being stored at 4 1C at

the International Livestock Research Institute—ILRI (Nairobi, Kenya) biobank.

DNA was extracted using the Nucleon Genomic DNA extraction kit (Tepnel

Life Sciences, Manchester, UK).

Genotyping and quality control
The Illumina BovineSNP50 v. 1 beadchip (Illumina Inc., San Diego, CA, USA)

includes 56 947 SNPs comprising 54 436 autosomal SNPs, 1341X chromosome

SNPs and 1170 unmapped SNPs (the mapping of the genomic positions was

done using the University of Maryland genome assembly v 3.0; www.cbcb.um-

d.edu/research/bos_taurus_assembly.shtml). Genotyping of the 548 calves was

carried out at the USDA-ARS bovine functional (Beltsville, MD, USA) and

GeneSeek (http://www.neogen.com/geneseek/) laboratories. An additional 158

reference animals representing two European taurine breeds (Holstein n¼ 64

and Jersey n¼ 28), one AT breed (N’dama n¼ 25), one Asian zebu breed

(Nelore n¼ 21) and one East African admixed breed (Sheko n¼ 20, Ethiopia)

breeds were drawn from the Bovine HapMap Consortium (2009).

Quality control was carried out using GenABEL program (Aulchenko et al.,

2007) in R (R Development Core Team, 2009). The check.marker function was

used to prune individual calves that failed to pass the inclusion criterion of

successful genotypes per calf of 490% and an average identical by state

threshold of 490% (excluding both animals).

Only mapped autosomal SNPs (n¼ 54 436) were screened. Autosomal SNPs

with call rates of o90% were excluded. Unless stated, no minor allele

frequency threshold (to avoid exclusion of SNPs that maybe informative in

a single breed or population) and Hardy and Weinberg Equilibrium (as

introgression may result in loci not in Hardy and Weinberg equilibrium)

criteria, were applied. A total of 6151 SNPs failed the inclusion criterion,

leaving a total 48 285 SNP for analysis. A random subset of 45 000 SNPs was

used for STRUCTURE, principal component analysis, genetic relatedness and

genetic differentiation analyses. No random sampling of SNPs was performed

for linkage disequilibrium (LD) and effective population size calculations.

Genotyping data has been deposited in Dryad (Murray et al., 2013a).

Admixture analysis
The extent of admixture and the origin of the different genetic proportions

were investigated, using a Bayesian clustering method implemented in the

STRUCTURE program (Pritchard et al., 2000, 2007). Five independent

replicates of an admixed model with independent allele frequencies were run

for a burn-in period of 50 000 iterations and 100 000 Markov Chain Monte

Carlo steps for K¼ 1 to K¼ 7. The mean output files from CLUster Matching

and Permutation Program—CLUMPP v 1.1.2 (Jackobsson and Rosenberg,

2007) were used as input files to graphically display the population structure

barplots using the barplot function in R (R Development Core Team, 2009).

The population structure analyses using 45K markers were run on three calf

sample sets: (i) full study population (n¼ 548) and reference breeds (n¼ 158)

totaling 706 animals (data set 1), (ii) non-European introgressed calves

(n¼ 425) and reference breeds (n¼ 158) giving a total of 583 animals (data

set 2) and (iii) non-European introgressed calves (n¼ 425) (data set 3). The

Ward clustering method (Ward, 1963) using the hclust function in R

(R Development Core Team, 2009) was used to identity discontinuities in

the distribution of the European taurine ancestry within data set 1. Multiple

methods were used to evaluate the optimal number of genome backgrounds

within the study population (Falush et al., 2003; Evanno et al., 2005; Pritchard

et al., 2007).

Principal component analysis
Principal component analyses were applied on the full study population and

reference breeds (data set 1) and the non-European introgressed calves (data

set 3) using adegenet v 1.3.1 (Jombart, 2008) to read the data files into R and

ade4 genetic package to calculate the principal components and eigenvalues

(Dray and Dufour, 2007). Both packages are found in R (R Development Core

Team, 2009).
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Genetic relatedness and genetic differentiation
Global and pairwise Fst statistics were calculated using the R-based hierfstat

0.04–6 package (Goudet, 2005). The assessment of the influence of physical

geographic distance on genetic distance between calf pairs within and between

the sub-locations (data set 3) was tested with the Mantel test. The analysis

was carried out with adegenet v 1.3.1 (Jombart, 2008) genetic package in R

(R Development Core Team, 2009). The geographic coordinates were

converted to kilometers using conversion units based on the World Geodetic

System 1984 (WGS84) spheroid. The functions dist and mantel.randtest were

used to calculate the pairwise geographic distances and the Mantel test statistic,

respectively. The pairwise rescaled Fst estimates (Fst/(1�Fst) were used for the

estimation of genetic differentiation between sub-locations in relation to

geographic distance (Rousset, 1997).

LD and effective population size in pure EASZ
Pairwise LD, measured as squared correlation coefficient r2 (Hill and

Robertson, 1968), was calculated in GenABEL (Aulchenko et al., 2007) for

the non-introgressed European calves (data set 3). The decrease of LD as a

function of distance between markers was evaluated for pairs up to 4 Mb apart

using markers with minor allele frequency above 0.01. The expected value was

predicted with Loess local regression of second degree using the 5% of the data

closest to the estimation point in the local regression as implemented in R

(R Development Core Team, 2009). For estimating the effective population

size, 11 bins (o0.1, 0.1–0.2, 0.2–0.3, 0.3–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, 2.0–2.5,

2.5–3.0, 3.0–3.5 and 43.5 Mb) were used, and the mean for each bin used to

obtain the expected r2.

Estimation of the ancestral effective population size was calculated using the

Weir and Hill (1980) adjusted formula, E (r2)¼ [1/(1þ 4Nec)]þ (1/n). Where

E (r2) is the expected LD, Ne is the effective population size, c is the

recombination frequency, n is the chromosome size or twice the sample size,

c was calculated using the Haldane’s mapping function (Haldane, 1919), with

the average marker distance between adjacent SNPs expressed in Morgans,

assuming 1 Mb¼ 1 cM (de Roos et al., 2008). The estimate for a bin relates to

the Ne for the generation t¼ 1/2c (Hayes et al., 2003) counted backwards from

the genotyped generation. A generation length of 6 years was assumed

(Mahadevan, 1955).

Performance and ascertainment bias of the Illumina BovineSNP50
v.1 beadchip in Kenyan EASZ
To assess the Illumina BovineSNP50 v.1 beadchip performance as a tool of

estimating zebu and taurine admixture proportions. STRUCTURE analyses at

K¼ 3 were performed using data sets of randomly selected sets of SNPs

(n¼ 5000, 10 000, 15 000, 25 000, 35 000 and 45 000) drawn from the cleaned

data set of 48 285 markers. These particular analyses were run using the

moderate and substantial calf categories consisting of 123 calves and 158

animals representing the five reference breeds (total number 281). Ancestral

genome proportions were generated from the STRUCTURE runs and used in

the subsequent linear correlation analyses carried out between markers sets in

R (R Development Core Team, 2009).

RESULTS

Out of 48 285 autosomal SNPs remaining in the data set following
quality control, 11 269 markers were monomorphic across the EASZ
population. The mean observed heterozygozity (Ho) within EASZ
calves (n¼ 548) and reference breeds are indicated in Table 1.
EASZ population shows an average Ho of 0.25±0.02 s.d. with no
significant differences across sub-locations (P40.001).

STRUCTURE runs from K¼ 2 to K¼ 5 using 45 000 random SNPs
are presented in Figure 1. Applying the Evanno et al. (2005) method
suggests K¼ 2 as the optimal partition (Supplementary Figure S2),
which is the uppermost relevant hierarchy reflecting the taurine and
indicine cattle split. A clear but less drastic improvement in the fit of
the model is visible by increasing K to 3, revealing previously
documented findings that highlight a further taurine split to African
and European taurines (The Bovine HapMap Consortium, 2009).

The increase from 3 to 4 genetic clusters is minimal and does not lead
to a new individual breed cluster. However, a notable improvement is
observed when increasing K to 5, revealing a finer resolution
separating the two European taurine breeds (Supplementary Figure
S2). Above K¼ 5, the increase in goodness of fit with larger K values
are only incremental, suggesting that they do not reveal significant
phylogenetic structure (Falush et al., 2003, Prichard et al., 2007).

STRUCTURE results of K¼ 3 are in agreement with prior
information about the main genetic architecture of the cattle on the
African continent being of three different ancestries using micro-
satellite loci; Asian zebu B. indicus, AT B. taurus and European taurine
B. taurus (Hanotte et al., 2002; The Bovine HapMap Consortium,
2009). Of interest, a subset of the EASZ calves has European taurine
ancestry, while the other East African cattle breed studied, the Sheko,
shows no European taurine introgression (Supplementary Table S1).
In addition, at K¼ 3, the Jersey breed presents a shared genetic
background (mean ancestral proportion �0.12, Supplementary Table
S1) with the N’dama breed. However, this is not observed at K¼ 5
(Figure 1). Possible AT membership is also observed in some
Holstein–Friesian animals up to a proportion of 0.10–0.11 (n¼ 3)
(Supplementary Table S1). Principal component analysis on the same
data set shows that PC1, explaining 65% of the variation, separates
the indicine and taurine breeds; whereas PC2, explaining 14% of the
variation, separates the AT breed (represented here by the N’dama of
West Africa) from the European breeds (Figure 2). For K¼ 4, the
proportion of European taurine in EASZ remains the same, but not
the inferred ancestral proportion of zebu and AT background
(Figure 1). In addition, there is hardly any genetic background shared
between the EASZ and the West African cattle (N’dama). However, a
substantial proportion of the EASZ genome remains shared with the
Nelore (Asian zebu). The largest proportion of genome ancestry
present in EASZ is now nearly unique to the EASZ and Sheko with
only traces of it found within the Nelore (Figure 1). K¼ 5 divides the
inferred European ancestry between the two European breeds (Jersey
and Holstein–Friesian) (Figure 1).

Using the Ward clustering method (Ward, 1963), we further
analyzed the proportion of European taurine background in the
EASZ (Figure 3a) based on the K¼ 3 model. Based on three observed
clusters, we defined three categories of calves: calves with X12.5%
European taurine background (category 1 representing animals with
‘substantial’ European introgression n¼ 29), calves with between 1.56
and 12.5% European taurine introgression (category 2 representing
the ‘moderate’ European taurine introgressed sample set n¼ 94) and
calves with p1.56% European taurine background (category 3
representing the ‘non-European’ introgressed sample set n¼ 425).
The 123 introgressed calves, representing the moderate and substan-
tial categories, are found within 12 sub-locations in the northern and
central regions of the study area (Supplementary Table S1). A
geospatial analysis of the substantial category reveals two main
hotspots of European taurine introgression (Figure 3b), whereas the

Table 1 Heterozygozity estimates of EASZ and four reference breeds

Breed Observed heterozygozity (Ho)

EASZ 0.25±0.02 s.d.

Holstein–Friesian 0.33±0.01 s.d.

Jersey 0.25±0.03 s.d.

N’dama 0.17±0.08 s.d.

Ethiopian Sheko 0.26±0.003 s.d.

Abbreviation: EASZ, East African Shorthorn Zebu.
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moderate category shows a north to south decrease of European
taurine introgression (r¼ 0.82, Po0.0001; Figure 3b).

STRUCTURE analysis (K¼ 3) of data set 2 reveals a homogenous
admixed EASZ population (Supplementary Figure S3) with average
genetic proportions of 0.84±0.009 s.d. and 0.16±0.009 s.d. of AT
and Asian zebu ancestries, respectively. Significant genome-wide
difference of AT or zebu ancestry across calves (Po0.0001) was also
observed.

Interestingly, the chromosome-wise analyses reveal that some of the
‘non-introgressed’ calves (Supplementary Figure S4a) have moderate
proportion of European taurine ancestry on a small subset of
chromosomes, similarly within the Sheko population. There are
highly significant differences (Po0.0001, Supplementary Figure S4b
and Supplementary Table S2) among chromosomes in the amount of
AT ancestry in both introgressed and non-introgressed EASZ calves.
However, for the same genetic ancestry (AT) in the Sheko population,
no significant differences were observed (P40.05; Supplementary
Table S2). For the European taurine and Asian zebu ancestries, highly

significant differences between chromosomes are observed in the non-
introgressed calves’ cohort unlike in the Sheko population (P40.05;
Supplementary Table S2), as illustrated in Supplementary Figures S4a
and c, respectively. Differences among calves are highly significant for
European taurine ancestry in both introgressed and non-introgressed
calves, as well as for Asian zebu ancestry in introgressed calves
(Supplementary Figures S4a and c). In contrast, there are no
differences in the AT ancestry among all the calves’ cohorts and
Sheko population (Supplementary Figure S4b).

Strong positive correlations for the AT and Asian zebu ancestry
between EASZ and Sheko are observed across chromosomes (r¼ 0.89,
Po0.0001 and r¼ 0.94, Po0.0001). Considering only EASZ calves
with moderate and substantial European taurine introgression, no
significant difference is observed in European taurine ancestry
proportion across chromosomes (P¼ 0.136).

Data set 3 allows addressing the possible presence of sub-structur-
ing within the non-European taurine introgressed EASZ population.
PC1 and PC2 explain 4% and 3% of the percentage of the total

Figure 1 STRUCTURE bar plots of genetic membership proportions (K¼2 to K¼5). Each animal is represented by a vertical line divided into K colors.

Breed names and locations are indicated at the top and bottom of the bar plots, respectively.
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variance, respectively (Supplementary Figure S5a). Three genetic
clusters are observed of which the largest includes 415 calves, while
the second and third clusters include 4 and 6 calves from Bukati and
Luanda sub-locations, respectively (Supplementary Figure S5a). This
result is further illustrated with the STRUCTURE results (K¼ 3),
which distinguishes the same calves (Supplementary Figure S5b).

No genetic differentiation is observed between sub-locations
(Fst¼ 0.0033, P¼ 0.09) after removing the moderate and substantial
European introgressed calves. Mantel test between pairwise sub-
locations genetic differentiation (calculated as (Fst/(1�Fst)) and
geographic distances was not significant (r¼ 0.155, P¼ 0.07) for the
pure calves category (Supplementary Figure S6).

The extent of LD over genome regions is related to effective
population size. In the pure EASZ population, the LD decreased
quickly (Supplementary Figure S7). The expected value was estimated
with Loess curve based on a total of 2 368 859 comparisons between
markers. At the minimum distance, the expected r2 is 0.32. It
decreases to 0.2 at 55.4 kb, to 0.1 at 200.3 kb and to 0.05 at
486.0 kb distance. LD begins to asymptote at the background level
of r2¼ 0.013 around 2 MB. The LD results were used to estimate the
effective population size.

The effective population size is characterized by a population
decline over time (Figure 4). However, a short stint of increasing
population size, starting around 126 generations ago (B756 years
ago), is observed before a drastic population decrease starting around
40 generations ago (B240 years ago) and continuing to present day
(Figure 4).

We assessed the effect of the number of markers for the estimation
of genome ancestry in our population assuming three ancestral
populations (indigenous AT, European taurine and Asian zebu) and
using only calves with moderate and substantial European taurine
introgression. We use linear correlation between sets of randomly
selected number of markers using STRUCTURE’s output of inferred
genetic membership proportions at K¼ 3. The analyses indicate that
the estimation of the proportion of genome ancestry varied with the
number of markers included, and that it depends on the genetic
background being estimated (Supplementary Figures S8a–c).

As expected, the more markers the better the correlation. More
particularly, a correlation coefficient of r¼ 0.99 (Po0.0001) was
obtained for the 15–25K pairwise marker comparison for the
European background (Supplementary Figure S8a), and for the
25–35K pairwise marker comparison for the Asian zebu ancestry
(Supplementary Figure S8b). However, for the estimation of the
AT ancestral background a correlation coefficient of only r¼ 0.92
(Po0.0001) was obtained for the 35–45K pairwise marker
comparisons (Supplementary Figure S8c).

Pruning neighboring markers in strong LD (r2 over 0.1–0.5) has
been suggested as a way to reduce data redundancy in STRUCTURE
analysis and ascertainment bias in the estimation of diversity.
Approximately 44% of the neighboring marker pairs linkage were
above the lower limit (r2¼ 0.1) and only 11% above the higher
limit (r2¼ 0.5) within the non-introgressed calves cohort. The
proportion of marker pairs in LD approximates the genome coverage
of the chip, for example, in mapping applications. Taking into
account the marker gaps, these proportions equal to coverage of
40 and 8%, with the respective r2 limits. The median for neighboring
marker pairs was 0.075. Therefore, no LD-based pruning was
undertaken.

DISCUSSION

This study aimed at unraveling the population history and genetic
structure of an indigenous population of EASZ of western Kenya at
genome-wide level. At K¼ 3, STRUCTURE analysis agrees with the
principal component analysis dimension results indicating the pre-
sence of three genetic backgrounds. This is not surprising given our
current understanding of the origin and history of these populations
and it is in agreement with previous finding using microsatellite loci
(Hanotte et al., 2002). Moreover, using 45 000 randomly selected
autosomal genome-wide SNP markers, we are able to unravel finer
details of the extent of genome admixture (AT, European taurine and
Asian zebu) within the studied populations (Figures 1 and 2).
Assessment of the level of inferred ancestral proportion difference
between animals (two EASZ calf cohorts and the Sheko breed) and
autosomes (Supplementary Figures S4a–c) is also presented.

Our results support ancient zebu�AT admixture in the EASZ
population, subsequently shaped by selection and/or genetic drift,
followed by a more recent exotic European cattle introgression.
Indeed, we do observe very little variation among animals for the
inferred zebu and AT ancestral proportions, at the contrary of the
inferred European taurine background. It indicates that the AT and
zebu genome ancestries have had time to ‘diffuse’ homogenously
among the calves of our study population, while the level of European
taurine introgression, of more recent origin, still needs to reach an
equilibrium (Figure 1). Interestingly, we observe differences in zebu or
AT ancestry proportions among chromosomes, differences shared
between the EASZ and the Sheko as revealed by the correlation
analyses. It suggests at least a partial role of selection in shaping the
genome architecture of present day indigenous East African cattle
populations rather than only genetic drift. The EASZ and Sheko
admixed (taurine� zebu) populations occupy to some extent similar
agro-ecological environments in different geographical locations
(DAGRIS, 2007). It remains, however, unknown which common
selection pressures may have shaped the genome of these crossbreed
populations. These effects may be attributed to environmental factors
(for example, common infectious disease challenges) and/or may be
the consequence of within genome selection pressures following the
crossbreeding of cattle belonging to two distinct lineages that
separated more than half a million years ago (Loftus et al., 1994;
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MacHugh et al., 1997). Worth mentioning here, is the detected
presence so far of only taurine cattle mitochondrial DNA on the
African continent even in populations phenotypically classified as
zebu (Gifford-Gonzalez and Hanotte, 2011), is an observation
compatible with the pattern of male-mediated zebu introgression
into taurine animals or with a selection pressure in favor of taurine
mitochondrial haplotypes.

We also assessed if the global genome admixture of the EASZ could
be further partitioned to finer detail. In other words, whether the AT
and Asian zebu inferred genetic ancestry in EASZ at K¼ 3 may be
further separated into distinct genome components that reflect in-
depth details revealing the history of the breed. Previous studies

indicate that through the Horn of Africa, the African continent likely
witnessed two waves of zebu introductions and migrations (Hanotte
et al., 2002), which may have distinctively imprinted the genome of
the EASZ. The presence of a unique shared genetic background at
K¼ 4 (Figure 1) between EASZ and Sheko, absent in both the Nelore
and N’dama breeds, is compatible with a two wave zebu introgression
pattern. It would be tempting to claim that this additional component
may represent the first phase intermediate zebu–taurine hybrid, so-
called sanga cattle (see Rege, 1999; Rege and Tawah, 1999), but in
absence of an appropriate reference population such interpretation
remains hypothetical. Indeed, the presence of a ‘unique’ East African
genetic background will also be compatible with an indigenous

Figure 3 (a) Histogram representing the frequency of calves with varying levels of European ancestry. Three categories of European taurine introgression of

data set 1 were defined using the Ward algorithm. (b) Geospatial distribution of the substantial European taurine (X12.5%) and moderate European taurine

(1.56%oXo12.5%) categories. It indicates a genetic cline and two hotspots of substantial European introgression (X12.5%) found within close proximity

of animal markets.
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African ancestry (for example, from African wild aurochs introgres-
sion). The analysis of more African cattle populations, representative
of a broader geographic area from the continent, as well as additional
reference breeds drawn outside of the continent may further clarify
this issue. Until then, we should favor the clearly interpretable three
clusters model previously supported by several studies (for example,
Hanotte et al., 2002).

As mentioned above, the level of European taurine ancestry in
EASZ was unevenly distributed among calves, but relatively similar
among chromosomes (Figure 1 and Supplementary Figure S4a).
There are several possible European taurine genetic sources in the
studied area. These include concluded and ongoing dairy breed
improvement programs that used/use exotic animals and semen. Also,
animal markets in the studied area are stocked with crossbred
animals. Although the overall average European ancestry was only
2% for the entire studied population, the proportions varied across
the study area. The animals with substantial European ancestry
(X12.5%), which is compatible with a European taurine introgres-
sion event three or less generations ago, were found close to major
livestock markets (Figure 3b). Interestingly, the average proportions of
European taurine (ranging between 4 and 7%) were higher in
northern sub-locations such as Busia and Bungoma that participated
actively in initiatives to develop the local dairy production
systems (Baltenweck et al., 2005). In the southern sub-locations
found within Siaya district, little or no European taurine introgression
was observed (p1.25%; Figure 3b). We purposely avoided the
sampling of first-generation crossbred animals during the study and
therefore our data is not representative of the current impact of dairy
sector development activities on the indigenous EASZ population.
Even so, our study still highlights the trend of European taurine
introgression into the EASZ population. An interesting related
question is whether or not such exotic introgression is under
selection? Commercial cattle originating from the temperate environ-
ment are known to be poorly adapted to most of the tropical agro-
ecosystems (for example, Vordermeier et al., 2012) and selection
against exotic introgression will be expected. Our recent analysis of
the same EASZ animals suggests that it is indeed the case with
increased vulnerability to infectious diseases for the EASZ intro-
gressed animals (Murray et al., 2013b).

Excluding introgressed animals with exotic taurine, nonsignificant
genetic differentiation was observed between sub-locations

(Supplementary Figure S6). Low or absence of differentiation implies
frequent exchanges and/or movements of animals across a geogra-
phical area (Tapio et al., 2010; Dumasy et al., 2012). This is
compatible with movement of livestock, including breeding bulls
across the studied area and active animal trade between sub-locations.
It may also explain why we do observe in two sub-locations (Bukati
and Luanda) a few calves with different indigenous ancestral propor-
tion. The parentage from these calves could have included other
indigenous breed(s) present near the studied area.

EASZ are believed to comprise of several sub-populations accord-
ing to the farmer communities rearing them. These include the
Kavirondo zebu reared by the Luo and Luhya communities, and the
Teso zebu reared by the Teso community (DAGRIS, 2007). Berthouly
et al. (2009) have shown that, in Vietnamese goat, genetic differentia-
tion is greatly influenced by farmers’ ethnicity and husbandry
practices. There is no apparent evidence that this may be the case
in our study population.

Decrease in LD as a function of distance between markers has been
reported in several cattle population or breeds (for example, de Roos
et al., 2008; Gautier et al., 2009; Flury et al., 2010). The observed
intermediate LD in EASZ, 0.05 or2o0.2 (Supplementary Figure S7),
reaches approximately as far in the genome as in other cattle
populations (de Roos et al., 2008; Gautier et al., 2009; Flury et al.,
2010), but both the minimum and maximum r2 were lower than
commonly observed. The background LD (the minimum value to
which the mean LD asymptotes with increasing distance between
markers) is approximately a quarter of those generally observed in
cattle populations (de Roos et al., 2008; Gautier et al., 2009; Flury
et al., 2010; Supplementary Figure S7). It is similar to the expected
value for a heavily stratified population (Gautier et al., 2007). This
may suggest that our population has been subdivided in the past,
although today we do not observe genetic differentiation across the
studied area.

There are several algorithms for inferring population size from LD
and it remains unclear which method is the most appropriate one (for
example, Corbin et al., 2012). However, cattle LD estimates indicate
that all these populations, which include Asian zebu, AT and
European taurine breeds, have been shrinking over time (Gautier
et al., 2007; de Roos et al., 2008; The Bovine HapMap Consortium,
2009; Flury et al., 2010). The trend has been associated with
domestication events, artificial selection for economic traits and
breed formation (The Bovine HapMap Consortium, 2009). We do
observe a similar declining trend in population size for the EASZ
(Figure 4). However, in contrast to other cattle populations, an
increase in effective population size is observed approximately 126
generations ago.

Historical cattle generation lengths, prior the intensive breeding
system, are expected to be longer than 4 years (Kidd and Cavalli-
Sforza, 1974). We assume a 6 years generation length in the EASZ as
estimated in Red Sindhi cattle on the Indian subcontinent
(Mahadevan, 1955). It is slightly shorter than 6.72 years estimated
by Alim (1960) for Kenana zebu cattle in Sudan. With this
assumption, the EASZ expansion would have begun approximately
126 generations or B750 years ago, which is the time when zebu
cattle supposedly became common in the Rift Valley (Payne, 1970).
We then observe a drastic decrease in effective population size starting
around 40 generation or 240 years ago up to present time (Figure 4).
During this time span (B240–750 years ago), three exceptionally
favorable climatic periods with relatively shorter dry spells were
experienced in Eastern Africa (Verschuren et al., 2000). The cattle
population seemed to thrive during these favorable seasons but
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drastically shrunk during the subsequent Lapanarat–Mahlatule
drought that was characterized by a sequel of severe droughts and
political upheavals (Verschuren et al., 2000). It is also well docu-
mented that East African cattle were decimated following the
rinderpest epidemic at the end of the nineteenth century (Blench,
1993; Paynes and Hodges, 1997). Our data suggests that the decline in
cattle population in the region had already started before the disease
outbreaks.

The BovineSNP50 v. 1 beadchip used in this study allowed us to
estimate the ancestry proportions of the three main cattle lineages
within the EASZ. The largest proportion of the markers included on
this beadchip was selected for informativeness in European taurine
breeds (Matukumalli et al., 2009), and not surprisingly, a small
number of these markers are sufficient for the estimation of the
European ancestral proportion (Supplementary Figure S8a). This
ascertainment bias makes the SNP chip particularly suitable for the
detection of European taurine introgression in African native cattle
populations. In contrast, more markers were required for accurate
estimation of the zebu (Supplementary Figure S8b) and more
particularly the AT ancestries (Supplementary Figure S8c). Owing to
this technical shortcoming, the taurine ancestral estimates of our
study population may not be fully conclusive. The current availability
of a BovineHD genotyping bead chip (Illumina) offers an opportu-
nity to clarify this issue. In addition, we show here that the
neighboring markers in the BovineSNP50 v. 1 beadchip are not
typically in strong LD, and the chip is informative only for
approximately half of the EASZ genome, making the chip an
incomplete tool for genome-wide association study, detection of
signatures of selection and genomic selection.

The history of East African cattle is complex. It was closely
intermingled with the history of local human communities (Hanotte
et al., 2002). Undoubtedly, the need to adapt to the harsh tropical
environments of the area must have shaped the present day East
African cattle genomes. This article presents valuable insights toward
better understanding the genetic landscape, genetic affinities and
demographic history of an African indigenous cattle breed as well as
highlights the urgent need to implement crucial management strate-
gies pertinent in the population’s sustenance. The expected ‘Livestock
Revolution’ (Delgado et al., 1999) describes a growing demand for
animal products especially in developing countries. It presents a
unique opportunity to harness the African indigenous livestock
productivity potential by re-defining current breeding strategies aimed
at obtaining both productive and resilient animals, while concurrently
preserving the rich genetic variability of these populations. In-depth
characterization of the genome of these indigenous African breeds is
an essential step toward achieving these ultimate goals.

DATA ARCHIVING

Data available from the Dryad Digital Repository: doi:10.5061/
dryad.bc598.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We extend our sincere gratitude to the Wellcome Trust (grant reference 07995)

for financially supporting this project. USDA-ARS bovine functional

laboratory and Geneseek veterinary diagnostics provided invaluable technical

assistance through the genotyping of the samples. This project was also

partially supported by USDA Agricultural Research Service project 1265-

31000-104-00D. Mention of trade names or commercial products in this article

is solely for the purpose of providing specific information and does not imply

recommendation or endorsement by the US Department of Agriculture. We

also thank Professor Steve Kemp (University of Liverpool and ILRI) for

providing laboratory space and technical support through the help of Wasike

Selieli, Moses Ogugo and John Wambugu. We also wish to acknowledge the

grass root farmers of Western Kenya who participated fully and made this

project a success. Last but not least, we thank the referees for their constructive

comments and suggestions during the reviewing process.

Alim KA (1960). Reproductive rates and milk yield of Kenana cattle in Sudan.
J Agricultural Sci 55: pp 183–188.

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007). GenABEL: an R library for
genome-wide association analysis. Bioinformatics 23: 1294–1296.

Baltenweck I, Staal S, Njoroge L, Wanyoike F, Ochungo P, Kariuki E (2005). Targeting Pro-
Poor Investment in the Kenyan Dairy Sub-Sector. Report prepared by the International
Livestock Research Institute (ILRI) for IFAD and the Government of Kenya. ILRI:
Nairobi, Kenya.

Barendse W, Harrison BE, Bunch RJ, Thomas MB, Turner LB (2009). Genome wide
signatures of positive selection: the comparison of independent samples and the
identification of regions associated to traits. BMC Genomics 10: 178.

Bebe BO, Udo HMJ, Rowlands GJ, Thorpe W (2003). Smallholder dairy systems in the
Kenyan highlands: breed preferences and breeding practices. Livest Prod Sci 82:
117–127.
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Flury C, Tapio M, Sonstegard T, Drögemüller C, Leeb T, Simianer H, Hanotte O, Rieder S
(2010). Effective population size of an indigenous Swiss cattle breed estimated from
linkage disequilibrium. J Anim Breed Genet 127: 339–347.

Gaughan JB, Mader TL, Holt SM, Josey MJ, Rowan KJ (1999). Heat tolerance of Boran
and Tuli crossbred steers. J Anim Sci 77: 2398–2405.

Gautier M, Faraut T, Moazami-Goudarzi K, Navratil V, Foglio M, Grohs C et al. (2007).
Genetic and haplotypic structure in 14 European and African cattle breeds. Genetics
177: 1059–1070.

Gautier M, Flori L, Riebler A, Jaffrezic F, Laloe D, Gut I et al. (2009). A whole genome
Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics
10: 550.

Gautier M, Laloe D, Moazami-Goudarzi K (2010). Insights into the genetic history of
French cattle from dense SNP data on 47 worldwide breeds. PLoS ONE 5: e13038.

Genome-wide analysis of East African Shorthorn Zebu
MN Mbole-Kariuki et al

8

Heredity

http://dagris.ilri.cgiar.org


Gautier M, Naves M (2011). Footprints of selection in the ancestral admixture of a New
World Creole cattle breed. Mol Ecol 20: 3128–3143.

Gifford-Gonzalez D, Hanotte O (2011). Domesticating animals in Africa: implications of
genetic and archaeological findings. J World Prehistory 24: 1–23.

Goudet J (2005). Hierfstat, a package for R to compute and test hierarchical F-statistics.
Mol Ecol Notes 5: 184–186.

Haldane JBS (1919). The recombination of linkage values and the calculation of distance
between linked factors. J Genet 8: 299–309.

Haile A, Workneh A, Noah K, Tadelle D, Azage T (2011). Breeding strategy to improve
Ethiopian Boran cattle for meat and milk production. IPMS (Improving Productivity
and Market Success) of Ethiopian Farmers Project Working Paper 26. ILRI: Nairobi,
Kenya.

Hammond AC, Olson TA, Chase Jr CC, Bowers EJ, Randel RD, Murphy CN et al. (1996).
Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano,
compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci 74:
295–303.

Hanotte O, Tawah CL, Bradley DG, Okomo M, Verjee Y, Ochieng J et al. (2000). Geographic
distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y
specific allele amongst sub-Saharan African cattle breeds. Mol Ecol 9: 387–396.

Hanotte O, Bradley DG, Ochieng JW, Verjee Y, Hill EW, Rege JEO (2002). African
pastoralism: genetic imprints of origins and migrations. Science 296: 336–339.

Hanotte O, Ronin Y, Agaba M, Nilsson P, Gelhaus A, Horstmann R et al. (2003). Mapping
of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African
N’Dama and susceptible East African Boran cattle. Proc Natl Acad Sci USA 97:
7443–7448.

Hansen PJ (2004). Physiological and cellular adaptations of zebu cattle to thermal stress.
Anim Reprod Sci 83: 349–360.

Hayes BJ, Visscher PM, McPartlan HC, Goddard ME (2003). Novel multilocus measure of
linkage disequilibrium to estimate past effective population size. Genome Res 13:
635–643.

Hill WG, Robertson A (1968). Linkage disequilibrium in finite populations. Theor Appl
Genet 38: 226–231.

Jakobsson M, Rosenberg NA (2007). CLUMPP: a cluster matching and permutation
program for dealing with label switching and multimodality in analysis of population
structure. Bioinformatics 23: 1801–1806.

Jombart T (2008). Adegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics 24: 1403–1405.

Kidd KK, Cavalli-Sforza LL (1974). The role of genetic drift in the differentiation of
Icelandic and Norwegian cattle. Evolution 28: 381–395.

Latif AA, Punyua DK, Nokoe S, Capstick PB (1991a). Tick infestations on Zebu cattle in
western Kenya: individual host variation. J Med Entomol 28: 114–121.

Latif AA, Punyua DK, Nokoe S, Capstick PB (1991b). Tick infestations on Zebu cattle in
western Kenya: quantitative assessments of host resistance. J Med Entomol 28:
122–126.

Lawrence JA, Musisi FL, Mfitilodze MW, Tjorneho JK, Whiteland AP, Kafuwa PT et al.
(1996). Integrated tick and tick-borne disease control trials in crossbred dairy cattle in
Malawi. Trop Anim Health Prod 28: 280–288.

Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P (1994). Evidence for two
independent domestications of cattle. Proc Natl Acad Sci USA 91: 2757–2761.

Mahadevan P (1955). Population and production characteristics of Red Sindhi cattle in
Ceylon. J Dairy Sci 38: 1231–1241.

MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG (1997). Microsatellite
DNA variation and the evolution, domestication and phylogeography of taurine and zebu
cattle (Bos taurus and Bos indicus). Genetics 146: 1071–1086.

Mattioli RC, Bah M, Faye J, Kora S, Cassama M (1993). A comparison of field tick infestation
on N’dama, Zebu and N’dama x Zebu crossed cattle. Vet Parasitol 47: 139–148.

Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP et al. (2009).
Development and characterization of a high density SNP genotyping assay for cattle.
PLoS ONE 4: e5350.

McTavish EJ, Decker JE, Schnabel RD, Taylor JF, Hillis DM (2013). New world cattle show
ancestry from multiple independent domestication events. Proc Natl Acad Sci USA
110: E1398–E1406.

Melka MG, Schenkel FS (2012). Analysis of genetic diversity of Brown Swiss, Jersey and
Holstein populations using genome-wide single nucleotide polymorphism markers.
BMC Res Notes 5: 161.

Murray GGR, Woolhouse MEJ, Tapio M, Mbole-Kariuki MN, Sonstegard TS, Thumbi SA
et al. (2013a). Data from: genetic susceptibility to infectious disease in East African
Shorthorn Zebu: a genome-wide analysis of the effect of heterozygosity and exotic
introgression. Dryad Digital Repository 10.5061/dryad.bc598.

Murray GGR, Woolhouse MEJ, Tapio M, Mbole-Kariuki MN, Sonstegard TS, Thumbi SA
et al. (2013b). Genetic susceptibility to infectious disease in East African Shorthorn
Zebu: a genome-wide analysis of the effect of heterozygosity and exotic introgression.
BMC Evol Biol 13: 246. http://dx.doi.org/10.1186/1471-2148-13-246.

Pant SD, Schenkel FS, Verschoor CP, You QM, Kelton DF, Moore SS et al. (2010).
A principal component regression based genome wide analysis approach reveals the

presence of a novel QTL on BTA7 for MAP resistance in Holstein cattle. Genomics 95:
176–182.

Payne WJA (1970). Cattle production in the tropics. In: Breeds and Breeding, vol. I.
Longma: London, UK.

Paynes WJA, Hodges J (1997). Tropical Cattle: Origins, Breeds and Breeding policies.
Blackwell Science: Oxford.

Pritchard KJ, Stephens M, Donnelly P (2000). Inference of population structure using
multilocus genotype data. Genetics 155: 945–959.

Pritchard KJ, Wen X, Falush D (2007). Documentation for structure software; Version 2.2.
http://pritch.bsd.uchicago.edu/software/structure22/.

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing: Vienna, Austria.

Rege JEO (1999). The state of African cattle genetic resources I. Classification framework
and identification of threatened and extinct breeds. Animal Genetic Resources
Information 25: 1–25.

Rege JEO, Tawah CL (1999). The state of African cattle genetic resources II. Geographical
distribution, characteristics and uses of present-day breeds and strains. Animal Genetic
Resources Information 26: 1–25.

Rege JEO, Kahi A, Okomo-Adhiambo M, Mwacharo J, Hanotte O (2001). Zebu Cattle of
Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and
Options for Improved Use. Animal Genetic Resources Research 1. ILRI (International
Livestock Research Institute): Nairobi, Kenya, pp 103.

Rousset F (1997). Genetic differentiation and estimation of gene flow for Fstatistics under
isolation by distance. Genetics 145: 1219–1228.

Settles M, Zanella R, McKay SD, Schnabel RD, Taylor JF, Whitlock R et al. (2009).
A whole genome association analysis identifies loci associated with Mycobacterium
avium subsp. paratuberculosis infection status in US Holstein cattle. Anim Genet 40:
655–662.

Tapio M, Ozerov M, Tapio I, Toro MA, Marzanov N, Ćinkulov M et al. (2010). Microsatellite-
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